Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Annu Rev Immunol ; 39: 695-718, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33646857

ABSTRACT

Among antibodies, IgA is unique because it has evolved to be secreted onto mucosal surfaces. The structure of IgA and the associated secretory component allow IgA to survive the highly proteolytic environment of mucosal surfaces but also substantially limit IgA's ability to activate effector functions on immune cells. Despite these characteristics, IgA is critical for both preventing enteric infections and shaping the local microbiome. IgA's function is determined by a distinct antigen-binding repertoire, composed of antibodies with a variety of specificities, from permissive polyspecificity to cross-reactivity to exquisite specificity to a single epitope, which act together to regulate intestinal bacteria. Development of the unique function and specificities of IgA is shaped by local cues provided by the gut-associated lymphoid tissue, driven by the constantly changing environment of the intestine and microbiota.


Subject(s)
Immunity, Mucosal , Immunoglobulin A , Animals , Humans , Intestinal Mucosa , Peyer's Patches
2.
Immunity ; 56(3): 485-499, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36921575

ABSTRACT

The mucosal immune system of neonates goes through successive, non-redundant phases that support the developmental needs of the infant and ultimately establish immune homeostasis. These phases are informed by environmental cues, including dietary and microbial stimuli, but also evolutionary developmental programming that functions independently of external stimuli. The immune response to exogenous stimuli is tightly regulated during early life; thresholds are set within this neonatal "window of opportunity" that govern how the immune system will respond to diet, the microbiota, and pathogenic microorganisms in the future. Thus, changes in early-life exposure, such as breastfeeding or environmental and microbial stimuli, influence immunological and metabolic homeostasis and the risk of developing diseases such as asthma/allergy and obesity.


Subject(s)
Asthma , Hypersensitivity , Microbiota , Infant , Infant, Newborn , Humans , Immune System/physiology , Mucous Membrane
3.
Nat Immunol ; 20(5): 534-545, 2019 05.
Article in English | MEDLINE | ID: mdl-30962593

ABSTRACT

Lymph-node (LN) stromal cell populations expand during the inflammation that accompanies T cell activation. Interleukin-17 (IL-17)-producing helper T cells (TH17 cells) promote inflammation through the induction of cytokines and chemokines in peripheral tissues. We demonstrate a critical requirement for IL-17 in the proliferation of LN and splenic stromal cells, particularly fibroblastic reticular cells (FRCs), during experimental autoimmune encephalomyelitis and colitis. Without signaling via the IL-17 receptor, activated FRCs underwent cell cycle arrest and apoptosis, accompanied by signs of nutrient stress in vivo. IL-17 signaling in FRCs was not required for the development of TH17 cells, but failed FRC proliferation impaired germinal center formation and antigen-specific antibody production. Induction of the transcriptional co-activator IκBζ via IL-17 signaling mediated increased glucose uptake and expression of the gene Cpt1a, encoding CPT1A, a rate-limiting enzyme of mitochondrial fatty acid oxidation. Hence, IL-17 produced by locally differentiating TH17 cells is an important driver of the activation of inflamed LN stromal cells, through metabolic reprogramming required to support proliferation and survival.


Subject(s)
Cell Proliferation , Fibroblasts/immunology , Interleukin-17/immunology , Lymph Nodes/immunology , Stromal Cells/immunology , Animals , Antibody Formation/genetics , Antibody Formation/immunology , Cell Survival/genetics , Cell Survival/immunology , Cells, Cultured , Colitis/genetics , Colitis/immunology , Colitis/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Fibroblasts/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Lymph Nodes/cytology , Lymph Nodes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/immunology , Receptors, Interleukin-17/metabolism , Stromal Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
4.
Immunity ; 54(12): 2812-2824.e4, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34861182

ABSTRACT

The composition of the intestinal microbiota is associated with both the development of tumors and the efficacy of anti-tumor immunity. Here, we examined the impact of microbiota-specific T cells in anti-colorectal cancer (CRC) immunity. Introduction of Helicobacter hepaticus (Hhep) in a mouse model of CRC did not alter the microbial landscape but increased tumor infiltration by cytotoxic lymphocytes and inhibited tumor growth. Anti-tumor immunity was independent of CD8+ T cells but dependent upon CD4+ T cells, B cells, and natural killer (NK) cells. Hhep colonization induced Hhep-specific T follicular helper (Tfh) cells, increased the number of colon Tfh cells, and supported the maturation of Hhep+ tumor-adjacent tertiary lymphoid structures. Tfh cells were necessary for Hhep-mediated tumor control and immune infiltration, and adoptive transfer of Hhep-specific CD4+ T cells to Tfh cell-deficient Bcl6fl/flCd4Cre mice restored anti-tumor immunity. Thus, introduction of immunogenic intestinal bacteria can promote Tfh-associated anti-tumor immunity in the colon, suggesting therapeutic approaches for the treatment of CRC.


Subject(s)
B-Lymphocyte Subsets/immunology , CD4-Positive T-Lymphocytes/immunology , Colon/pathology , Colorectal Neoplasms/immunology , Gastrointestinal Microbiome/immunology , Helicobacter Infections/immunology , Helicobacter hepaticus/physiology , Killer Cells, Natural/immunology , Lymphocytes, Tumor-Infiltrating/immunology , T Follicular Helper Cells/immunology , Tertiary Lymphoid Structures/immunology , Animals , Disease Models, Animal , Humans , Mice , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism
5.
Immunity ; 54(8): 1745-1757.e7, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34348118

ABSTRACT

Environmental enteric dysfunction (EED) is a gastrointestinal inflammatory disease caused by malnutrition and chronic infection. EED is associated with stunting in children and reduced efficacy of oral vaccines. To study the mechanisms of oral vaccine failure during EED, we developed a microbiota- and diet-dependent mouse EED model. Analysis of E. coli-labile toxin vaccine-specific CD4+ T cells in these mice revealed impaired CD4+ T cell responses in the small intestine and but not the lymph nodes. EED mice exhibited increased frequencies of small intestine-resident RORγT+FOXP3+ regulatory T (Treg) cells. Targeted deletion of RORγT from Treg cells restored small intestinal vaccine-specific CD4 T cell responses and vaccine-mediated protection upon challenge. However, ablation of RORγT+FOXP3+ Treg cells made mice more susceptible to EED-induced stunting. Our findings provide insight into the poor efficacy of oral vaccines in EED and highlight how RORγT+FOXP3+ Treg cells can regulate intestinal immunity while leaving systemic responses intact.


Subject(s)
Bacterial Toxins/immunology , Escherichia coli Vaccines/immunology , Gastrointestinal Diseases/immunology , Intestine, Small/immunology , T-Lymphocytes, Regulatory/immunology , Administration, Oral , Animals , Cell Line , Disease Models, Animal , Drosophila , Escherichia coli/immunology , Female , Forkhead Transcription Factors/metabolism , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Vaccination
6.
Cell ; 163(6): 1310-2, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26638066

ABSTRACT

The fidelity of the intestinal barrier is critical to maintaining a healthy relationship between the immune system and the microbiota. Levy et al. and Nowarski et al. reveal how microbiota-derived metabolites modulate the activation of the inflammasome to influence the expression of the cytokine IL-18, intestinal barrier function, and intestinal inflammation.


Subject(s)
Colitis, Ulcerative/pathology , Colitis, Ulcerative/physiopathology , Colon/immunology , Colon/microbiology , Inflammasomes/immunology , Interleukin-18/immunology , Microbiota , Receptors, Cell Surface/metabolism , Signal Transduction , Animals , Female , Male
7.
Cell ; 163(2): 354-66, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26451485

ABSTRACT

Infections have been proposed as initiating factors for inflammatory disorders; however, identifying associations between defined infectious agents and the initiation of chronic disease has remained elusive. Here, we report that a single acute infection can have dramatic and long-term consequences for tissue-specific immunity. Following clearance of Yersinia pseudotuberculosis, sustained inflammation and associated lymphatic leakage in the mesenteric adipose tissue deviates migratory dendritic cells to the adipose compartment, thereby preventing their accumulation in the mesenteric lymph node. As a consequence, canonical mucosal immune functions, including tolerance and protective immunity, are persistently compromised. Post-resolution of infection, signals derived from the microbiota maintain inflammatory mesentery remodeling and consequently, transient ablation of the microbiota restores mucosal immunity. Our results indicate that persistent disruption of communication between tissues and the immune system following clearance of an acute infection represents an inflection point beyond which tissue homeostasis and immunity is compromised for the long-term. VIDEO ABSTRACT.


Subject(s)
Gastrointestinal Microbiome , Immune System Diseases/microbiology , Immune System Diseases/pathology , Lymphatic Diseases/pathology , Yersinia pseudotuberculosis Infections/immunology , Yersinia pseudotuberculosis/physiology , Cell Movement , Chronic Disease , Dendritic Cells/pathology , Female , Humans , Lymphatic Diseases/microbiology , Lymphoid Tissue/immunology , Lymphoid Tissue/pathology , Male , Mesentery/immunology , Mesentery/pathology , Specific Pathogen-Free Organisms , Yersinia pseudotuberculosis Infections/pathology
8.
Cell ; 157(1): 121-41, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24679531

ABSTRACT

The microbiota plays a fundamental role on the induction, training, and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally, this immune system-microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nematodes, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected.


Subject(s)
Immune System , Inflammation/immunology , Microbiota , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Bacteria/classification , Bacterial Physiological Phenomena , Fungi/classification , Fungi/physiology , Humans , Symbiosis
9.
Immunity ; 48(5): 844-846, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768170

ABSTRACT

In this issue of Immunity, Trompette et al. (2018) show that dietary fiber and short chain fatty acids reduce influenza A virus-associated immunopathology by enhancing CD8+ T cell effector function and by promoting the differentiation of alternatively activated macrophages.


Subject(s)
CD8-Positive T-Lymphocytes , Influenza A virus , Dietary Fiber , Immunity
10.
Nature ; 591(7851): 645-651, 2021 03.
Article in English | MEDLINE | ID: mdl-33589820

ABSTRACT

Regulatory T (Treg) cells, although vital for immune homeostasis, also represent a major barrier to anti-cancer immunity, as the tumour microenvironment (TME) promotes the recruitment, differentiation and activity of these cells1,2. Tumour cells show deregulated metabolism, leading to a metabolite-depleted, hypoxic and acidic TME3, which places infiltrating effector T cells in competition with the tumour for metabolites and impairs their function4-6. At the same time, Treg cells maintain a strong suppression of effector T cells within the TME7,8. As previous studies suggested that Treg cells possess a distinct metabolic profile from effector T cells9-11, we hypothesized that the altered metabolic landscape of the TME and increased activity of intratumoral Treg cells are linked. Here we show that Treg cells display broad heterogeneity in their metabolism of glucose within normal and transformed tissues, and can engage an alternative metabolic pathway to maintain suppressive function and proliferation. Glucose uptake correlates with poorer suppressive function and long-term instability, and high-glucose conditions impair the function and stability of Treg cells in vitro. Treg cells instead upregulate pathways involved in the metabolism of the glycolytic by-product lactic acid. Treg cells withstand high-lactate conditions, and treatment with lactate prevents the destabilizing effects of high-glucose conditions, generating intermediates necessary for proliferation. Deletion of MCT1-a lactate transporter-in Treg cells reveals that lactate uptake is dispensable for the function of peripheral Treg cells but required intratumorally, resulting in slowed tumour growth and an increased response to immunotherapy. Thus, Treg cells are metabolically flexible: they can use 'alternative' metabolites in the TME to maintain their suppressive identity. Further, our results suggest that tumours avoid destruction by not only depriving effector T cells of nutrients, but also metabolically supporting regulatory populations.


Subject(s)
Lactic Acid/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Female , Glucose/metabolism , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Suppressor Factors, Immunologic/immunology , Suppressor Factors, Immunologic/metabolism , T-Lymphocytes, Regulatory/immunology
11.
Immunity ; 42(6): 1130-42, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26070484

ABSTRACT

Tissue-infiltrating Ly6C(hi) monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DCs) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals after tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function.


Subject(s)
Bone Marrow Cells/immunology , Dendritic Cells/immunology , Intestinal Mucosa/immunology , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Toxoplasma/immunology , Toxoplasmosis/immunology , Animals , Antigens, Ly/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Bone Marrow Cells/parasitology , Cell Differentiation , Cells, Cultured , Interferon-gamma/metabolism , Interleukin-12/genetics , Interleukin-12/metabolism , Intestinal Mucosa/parasitology , Killer Cells, Natural/parasitology , Leukocytes, Mononuclear/parasitology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Immunological , Organ Specificity/immunology , Repressor Proteins/genetics , Repressor Proteins/metabolism
12.
FASEB J ; 36(2): e22157, 2022 02.
Article in English | MEDLINE | ID: mdl-35032404

ABSTRACT

Congenital hepatic fibrosis (CHF) is a developmental liver disease that is caused by mutations in genes that encode ciliary proteins and is characterized by bile duct dysplasia and portal fibrosis. Recent work has demonstrated that mutations in ANKS6 can cause CHF due to its role in bile duct development. Here, we report a novel ANKS6 mutation, which was identified in an infant presenting with neonatal jaundice due to underlying biliary abnormalities and liver fibrosis. Molecular analysis revealed that ANKS6 liver pathology is associated with the infiltration of inflammatory macrophages to the periportal fibrotic tissue and ductal epithelium. To further investigate the role of macrophages in CHF pathophysiology, we generated a novel liver-specific Anks6 knockout mouse model. The mutant mice develop biliary abnormalities and rapidly progressing periportal fibrosis reminiscent of human CHF. The development of portal fibrosis in Anks6 KO mice coincided with the accumulation of inflammatory monocytes and macrophages in the mutant liver. Gene expression and flow cytometric analysis demonstrated the preponderance of M1- over M2-like macrophages at the onset of fibrosis. A critical role for macrophages in promoting peribiliary fibrosis was demonstrated by depleting the macrophages with clodronate liposomes which effectively reduced inflammatory gene expression and fibrosis, and ameliorated tissue histology and biliary function in Anks6 KO livers. Together, this study demonstrates that macrophages play an important role in the initiation of liver fibrosis in ANKS6-deficient livers and their therapeutic elimination may provide an avenue to mitigate CHF in patients.


Subject(s)
Carrier Proteins/metabolism , Cholestasis/pathology , Liver Cirrhosis/metabolism , Liver/metabolism , Macrophages/metabolism , Animals , Disease Models, Animal , Gene Expression/physiology , Inflammation/metabolism , Inflammation/pathology , Liver/pathology , Liver Cirrhosis/pathology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Monocytes/pathology
13.
Am J Pathol ; 191(4): 631-651, 2021 04.
Article in English | MEDLINE | ID: mdl-33385344

ABSTRACT

Cyclophosphamide may cause hemorrhagic cystitis and eventually bladder urothelial cancer. Genetic determinants for poor outcomes are unknown. We assessed actions of fibroblast growth factor receptor (FGFR) 2 in urothelium after cyclophosphamide exposure. Conditional urothelial deletion of Fgfr2 (Fgfr2KO) did not affect injury severity or proliferation of keratin 14+ (KRT14+) basal progenitors or other urothelial cells 1 day after cyclophosphamide exposure. Three days after cyclophosphamide exposure, Fgfr2KO urothelium had defective regeneration, fewer cells, larger basal cell bodies and nuclei, paradoxical increases in proliferation markers, and excessive replication stress versus controls. Fgfr2KO mice had evidence of pathologic basal cell endoreplication associated with absent phosphorylated ERK staining and decreased p53 expression versus controls. Mice with conditional deletion of Fgfr2 in urothelium enriched for KRT14+ cells reproduced Fgfr2KO abnormalities after cyclophosphamide exposure. Fgfr2KO urothelium had defects up to 6 months after injury versus controls, including larger basal cells and nuclei, more persistent basal and ectopic lumenal KRT14+ cells, and signs of metaplasia (attenuated E-cadherin staining). Mice missing one allele of Fgfr2 also had (less severe) regeneration defects and basal cell endoreplication 3 days after cyclophosphamide exposure versus controls. Thus, reduced FGFR2/ERK signaling apparently leads to abnormal urothelial repair after cyclophosphamide exposure from pathologic basal cell endoreplication. Patients with genetic variants in FGFR2 or its ligands may have increased risks of hemorrhagic cystitis or urothelial cancer from persistent and ectopic KRT14+ cells.


Subject(s)
Receptor, Fibroblast Growth Factor, Type 2/genetics , Regeneration/physiology , Urinary Bladder/metabolism , Urothelium/metabolism , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cyclophosphamide/pharmacology , Cystitis/chemically induced , Cystitis/metabolism , Disease Models, Animal , Mice, Transgenic , Muscle, Smooth/metabolism , Receptor, Fibroblast Growth Factor, Type 2/drug effects , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Regeneration/drug effects , Regeneration/genetics , Risk , Urinary Bladder/injuries , Urinary Bladder/pathology , Urothelium/pathology
14.
J Immunol ; 205(6): 1479-1487, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32900885

ABSTRACT

The evolution of the immune system, diet, and the microbiome are interconnected. Dietary metabolites modulate the cells of the immune system both directly and indirectly via shifts in the composition of the intestinal microbiota and its products. As a result, overconsumption and malnutrition can have substantial effects on immune responses and inflammation. In resource-rich nations, diets high in processed foods, fat, and sugar can contribute to chronic inflammatory conditions, which are on the rise worldwide. Conversely, in resource-poor countries, malnutrition associated with food insecurity can lead to immunodeficiencies and shifts in the microbiome that drive intestinal inflammation. Developing a deeper understanding of the relationship between diet, microbiota, and the immune system is of huge importance, given its impact on inflammatory diseases and its potential as an easily modifiable mediator of immunomodulation.


Subject(s)
Gastrointestinal Microbiome/immunology , Immune System/physiology , Nutritional Physiological Phenomena/immunology , Animals , Diet , Diet Therapy , Humans , Immunity , Immunomodulation , Inflammation
15.
Immunity ; 34(3): 435-47, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21419664

ABSTRACT

Vitamin A and its metabolite, retinoic acid (RA) are implicated in the regulation of immune homeostasis via the peripheral induction of regulatory T cells. Here we showed RA was also required to elicit proinflammatory CD4(+) helper T cell responses to infection and mucosal vaccination. Retinoic acid receptor alpha (RARα) was the critical mediator of these effects. Antagonism of RAR signaling and deficiency in RARα (Rara(-/-)) resulted in a cell-autonomous CD4(+) T cell activation defect, which impaired intermediate signaling events, including calcium mobilization. Altogether, these findings reveal a fundamental role for the RA-RARα axis in the development of both regulatory and inflammatory arms of adaptive immunity and establish nutritional status as a broad regulator of adaptive T cell responses.


Subject(s)
Adaptive Immunity/immunology , CD4-Positive T-Lymphocytes/immunology , Receptors, Retinoic Acid/immunology , Tretinoin/immunology , Animals , Female , Homeostasis/immunology , Male , Mice , Mice, Inbred C57BL , Retinoic Acid Receptor alpha , Signal Transduction , Toxoplasmosis/immunology
16.
J Immunol ; 201(1): 243-250, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29777027

ABSTRACT

Inflammatory bowel disease has been associated with the dysregulation of T cells specific to Ags derived from the intestinal microbiota. How microbiota-specific T cells are regulated is not completely clear but is believed to be mediated by a combination of IgA, regulatory T cells, and type 3 innate lymphoid cells. To test the role of these regulatory components on microbiota-specific T cells, we bred CBir1 TCR transgenic (CBir1Tg) mice (specific to flagellin from common intestinal bacteria) onto a lymphopenic Rag1-/- background. Surprisingly, T cells from CBir1Tg mice bred onto a Rag1-/- background could not induce colitis and did not differentiate to become effectors under lymphopenic conditions, despite deficits in immunoregulatory factors, such as IgA, regulatory T cells, and type 3 innate lymphoid cells. In fact, upon transfer of conventional CBir1Tg T cells into lymphopenic mice, the vast majority of proliferating T cells responded to Ags other than CBir1 flagellin, including those found on other bacteria, such as Helicobacter spp. Thus, we discovered a caveat in the CBir1Tg model within our animal facility that illustrates the limitations of using TCR transgenics at mucosal surfaces, where multiple TCR specificities can respond to the plethora of foreign Ags. Our findings also indicate that T cell specificity to the microbiota alone is not sufficient to induce T cell activation and colitis. Instead, other interrelated factors, such as the composition and ecology of the intestinal microbiota and host access to Ag, are paramount in controlling the activation of microbiota-specific T cell clones.


Subject(s)
Flagellin/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/microbiology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , Cell Proliferation , Cells, Cultured , Colitis/metabolism , Female , Helicobacter/immunology , Immunoglobulin A/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Helper-Inducer/immunology
17.
Trends Immunol ; 37(10): 647-658, 2016 10.
Article in English | MEDLINE | ID: mdl-27616558

ABSTRACT

Humans are meta-organisms that maintain a diverse population of microorganisms on their barrier surfaces, collectively named the microbiota. Since most pathogens either cross or inhabit barrier surfaces, the microbiota plays a critical and often protective role during infections, both by modulating immune system responses and by mediating colonization resistance. However, the microbiota can also act as a reservoir for opportunistic microorganisms that can 'bloom', significantly complicating diseases of barrier surfaces by contributing to inflammatory immune responses. This review discusses our current understanding of the complex interactions between the host, its microbiota, and pathogenic organisms, focusing in particular on the intestinal mucosa.


Subject(s)
Infections/immunology , Inflammation/immunology , Intestinal Mucosa/immunology , Microbiota/immunology , Opportunistic Infections/immunology , Animals , Host-Pathogen Interactions , Humans , Immunomodulation , Infections/microbiology , Intestinal Mucosa/microbiology , Metagenome/immunology , Opportunistic Infections/microbiology
18.
Clin Sci (Lond) ; 132(11): 1169-1177, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29925624

ABSTRACT

Oral vaccines (OVs), provide protection against pathogens that infect mucosal surfaces and their potency relies on their capacity to elicit T- and B-cell responses directed to these surfaces. Oral vaccination efficacy has been found to vary considerably with differences in geographical locations and socioeconomic status. Specifically, in children living in resource-poor countries, undernourishment and chronic gastrointestinal (GI) infection are associated with the failure of OVs, which is a tragic outcome for the children who would benefit most from mucosal-based protection from infection. Both undernutrition and GI infection have been shown to profoundly affect the microbiota, inducing 'dysbiosis' characterized by narrowed bacterial diversity and increased frequency of bacterial clades associated with the induction of inflammation. Recent studies have demonstrated that the microbiota exerts a profound effect on the development of mucosal immune responses. Therefore, it seems likely that OV failure in resource-poor regions is affected by alterations to the immune response driven by dysbiotic changes to the microbiota. Here, we review the contribution of the microbiota to OV efficacy in the context of diet and GI infection.


Subject(s)
Child Nutritional Physiological Phenomena/immunology , Gastroenteritis/immunology , Gastrointestinal Microbiome/immunology , Vaccines/administration & dosage , Administration, Oral , Child , Child, Preschool , Developing Countries , Diet , Dysbiosis/immunology , Humans , Immunity, Mucosal , Vaccines/immunology
19.
Eur J Immunol ; 46(6): 1480-9, 2016 06.
Article in English | MEDLINE | ID: mdl-27062243

ABSTRACT

Treg cells can secrete latent TGF-ß1 (LTGF-ß1), but can also utilize an alternative pathway for transport and expression of LTGF-ß1 on the cell surface in which LTGF-ß1 is coupled to a distinct LTGF-ß binding protein termed glycoprotein A repetitions predominant (GARP)/LRRC32. The function of the GARP/LTGF-ß1 complex has remained elusive. Here, we examine in vivo the roles of GARP and TGF-ß1 in the induction of oral tolerance. When Foxp3(-) OT-II T cells were transferred to wild-type recipient mice followed by OVA feeding, the conversion of Foxp3(-) to Foxp3(+) OT-II cells was dependent on recipient Treg cells. Neutralization of IL-2 in the recipient mice also abrogated this conversion. The GARP/LTGF-ß1 complex on recipient Treg cells, but not dendritic cell-derived TGF-ß1, was required for efficient induction of Foxp3(+) T cells and for the suppression of delayed hypersensitivity. Expression of the integrin αvß8 by Treg cells (or T cells) in the recipients was dispensable for induction of Foxp3 expression. Transient depletion of the bacterial flora enhanced the development of oral tolerance by expanding Treg cells with enhanced expression of the GARP/LTGF-ß1 complex.


Subject(s)
Immune Tolerance , Immunomodulation , Membrane Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Antigens/immunology , Biomarkers , Dendritic Cells/immunology , Dendritic Cells/metabolism , Forkhead Transcription Factors/metabolism , Gastrointestinal Microbiome/immunology , Gene Expression , Hypersensitivity, Delayed/genetics , Hypersensitivity, Delayed/immunology , Hypersensitivity, Delayed/metabolism , Immune Tolerance/genetics , Immunophenotyping , Integrins/genetics , Integrins/metabolism , Interleukin-2/metabolism , Membrane Proteins/genetics , Mice , Mice, Knockout , Phenotype , Protein Binding , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
20.
Immunol Rev ; 252(1): 24-40, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23405893

ABSTRACT

CD4(+) T cells are critical for the elimination of an immense array of microbial pathogens. Among the ways they accomplish this task is to generate progeny with specialized, characteristic patterns of gene expression. From this perspective, helper cells can be viewed as pluripotent precursors that adopt distinct cell fates. Although there are aspects of helper cell differentiation that can be modeled as a classic cell fate commitment, CD4(+) T cells also maintain considerable flexibility in their transcriptional program. This makes sense in terms of host defense, but raises the question of how these remarkable cells balance both these requirements, a high degree of specific gene expression and the capacity for plasticity. In this review, we discuss recent advances in our understanding of CD4(+) T-cell specification, focusing on how genomic perspectives have influenced our views of these processes. The relative contributions of sensors of the cytokine milieu, especially the signal transducer and activator of transcription family transcription factors, 'master regulators', and other transcription factors are considered as they relate to the helper cell transcriptome and epigenome.


Subject(s)
Cell Lineage/immunology , Epigenesis, Genetic/immunology , Genes, Regulator/immunology , T-Lymphocytes, Helper-Inducer/immunology , Transcriptome/immunology , Biological Evolution , Cell Differentiation , Cell Lineage/genetics , Cytokines/biosynthesis , Cytokines/immunology , Humans , Signal Transduction , T-Lymphocytes, Helper-Inducer/cytology , Transcription Factors/genetics , Transcription Factors/immunology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL