Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 35: 469-499, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28226228

ABSTRACT

Professional antigen-presenting cells (APCs) in the skin include dendritic cells, monocytes, and macrophages. They are highly dynamic, with the capacity to enter skin from the peripheral circulation, patrol within tissue, and migrate through lymphatics to draining lymph nodes. Skin APCs are endowed with antigen-sensing, -processing, and -presenting machinery and play key roles in initiating, modulating, and resolving cutaneous inflammation. Skin APCs are a highly heterogeneous population with functionally specialized subsets that are developmentally imprinted and modulated by local tissue microenvironmental and inflammatory cues. This review explores recent advances that have allowed for a more accurate taxonomy of APC subsets found in both mouse and human skin. It also examines the functional specificity of individual APC subsets and their collaboration with other immune cell types that together promote adaptive T cell and regional cutaneous immune responses during homeostasis, inflammation, and disease.


Subject(s)
Antigen-Presenting Cells/immunology , Dendritic Cells/immunology , Langerhans Cells/immunology , Macrophages/immunology , Monocytes/immunology , Skin/immunology , T-Lymphocytes/immunology , Animals , Antigen Presentation , Cell Movement , Homeostasis , Humans , Inflammation , Lymphocyte Activation , Mice
2.
Nat Immunol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956378

ABSTRACT

Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons.

3.
Cell ; 184(15): 4090-4104.e15, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34129837

ABSTRACT

The oral mucosa remains an understudied barrier tissue. This is a site of rich exposure to antigens and commensals, and a tissue susceptible to one of the most prevalent human inflammatory diseases, periodontitis. To aid in understanding tissue-specific pathophysiology, we compile a single-cell transcriptome atlas of human oral mucosa in healthy individuals and patients with periodontitis. We uncover the complex cellular landscape of oral mucosal tissues and identify epithelial and stromal cell populations with inflammatory signatures that promote antimicrobial defenses and neutrophil recruitment. Our findings link exaggerated stromal cell responsiveness with enhanced neutrophil and leukocyte infiltration in periodontitis. Our work provides a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis.


Subject(s)
Immunity, Mucosal , Mouth Mucosa/cytology , Mouth Mucosa/immunology , Neutrophils/cytology , Adult , Epithelial Cells/cytology , Gene Expression Regulation , Genetic Predisposition to Disease , Gingiva/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Microbiota , Myeloid Cells/cytology , Periodontitis/genetics , Periodontitis/immunology , Periodontitis/pathology , Single-Cell Analysis , Stromal Cells/cytology , T-Lymphocytes/cytology
4.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38301653

ABSTRACT

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Subject(s)
B-Lymphocytes , Palatine Tonsil , Humans , Adult , B-Lymphocytes/metabolism
5.
Nat Immunol ; 19(8): 859-870, 2018 08.
Article in English | MEDLINE | ID: mdl-30013146

ABSTRACT

IgE is an ancient and conserved immunoglobulin isotype with potent immunological function. Nevertheless, the regulation of IgE responses remains an enigma, and evidence of a role for IgE in host defense is limited. Here we report that topical exposure to a common environmental DNA-damaging xenobiotic initiated stress surveillance by γδTCR+ intraepithelial lymphocytes that resulted in class switching to IgE in B cells and the accumulation of autoreactive IgE. High-throughput antibody sequencing revealed that γδ T cells shaped the IgE repertoire by supporting specific variable-diversity-joining (VDJ) rearrangements with unique characteristics of the complementarity-determining region CDRH3. This endogenous IgE response, via the IgE receptor FcεRI, provided protection against epithelial carcinogenesis, and expression of the gene encoding FcεRI in human squamous-cell carcinoma correlated with good disease prognosis. These data indicate a joint role for immunosurveillance by T cells and by B cells in epithelial tissues and suggest that IgE is part of the host defense against epithelial damage and tumor development.


Subject(s)
B-Lymphocytes/physiology , Carcinoma, Squamous Cell/immunology , Epithelial Cells/physiology , Immunoglobulin E/metabolism , Intraepithelial Lymphocytes/physiology , Neoplasms, Experimental/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, IgE/metabolism , Animals , Anthracenes/toxicity , Carcinoma, Squamous Cell/diagnosis , Cell Death , Cells, Cultured , Complementarity Determining Regions/genetics , DNA Damage , Female , High-Throughput Nucleotide Sequencing , Immunoglobulin Class Switching , Immunoglobulin E/genetics , Immunologic Surveillance , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms, Experimental/chemically induced , Piperidines/toxicity , Prognosis , Receptors, Antigen, T-Cell, gamma-delta/genetics
6.
Immunity ; 54(2): 194-196, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33567257

ABSTRACT

The human lung harbors diverse macrophages that provide barrier immunity and maintain homeostasis, but their precursors are unclear. In this issue of Immunity, Evren et al. use a humanized mouse model to discern that classical monocytes give rise to alveolar and interstitial macrophages, whereas non-classical monocytes contribute to pulmonary intravascular macrophages.


Subject(s)
Lung , Macrophages, Alveolar , Animals , Humans , Macrophages , Mice , Monocytes
7.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34592166

ABSTRACT

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism , Base Sequence , Humans , Immunity, Innate/immunology , Inflammation/immunology , Interferon-alpha/blood , Pulmonary Fibrosis/pathology , RNA-Seq , Severity of Illness Index , Transcriptome/genetics , United Kingdom , United States
8.
Nature ; 631(8019): 189-198, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898278

ABSTRACT

The COVID-19 pandemic is an ongoing global health threat, yet our understanding of the dynamics of early cellular responses to this disease remains limited1. Here in our SARS-CoV-2 human challenge study, we used single-cell multi-omics profiling of nasopharyngeal swabs and blood to temporally resolve abortive, transient and sustained infections in seronegative individuals challenged with pre-Alpha SARS-CoV-2. Our analyses revealed rapid changes in cell-type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific time points and infection status. We observed that the interferon response in blood preceded the nasopharyngeal response. Moreover, nasopharyngeal immune infiltration occurred early in samples from individuals with only transient infection and later in samples from individuals with sustained infection. High expression of HLA-DQA2 before inoculation was associated with preventing sustained infection. Ciliated cells showed multiple immune responses and were most permissive for viral replication, whereas nasopharyngeal T cells and macrophages were infected non-productively. We resolved 54 T cell states, including acutely activated T cells that clonally expanded while carrying convergent SARS-CoV-2 motifs. Our new computational pipeline Cell2TCR identifies activated antigen-responding T cells based on a gene expression signature and clusters these into clonotype groups and motifs. Overall, our detailed time series data can serve as a Rosetta stone for epithelial and immune cell responses and reveals early dynamic responses associated with protection against infection.


Subject(s)
COVID-19 , Nasopharynx , SARS-CoV-2 , Single-Cell Analysis , T-Lymphocytes , Humans , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Nasopharynx/virology , Nasopharynx/immunology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Interferons/immunology , Interferons/metabolism , Male , Female , Macrophages/immunology , Macrophages/virology , Virus Replication , Epithelial Cells/virology , Epithelial Cells/immunology , Time Factors , Adult
9.
Nature ; 614(7947): 334-342, 2023 02.
Article in English | MEDLINE | ID: mdl-36697826

ABSTRACT

The liver is bathed in bacterial products, including lipopolysaccharide transported from the intestinal portal vasculature, but maintains a state of tolerance that is exploited by persistent pathogens and tumours1-4. The cellular basis mediating this tolerance, yet allowing a switch to immunity or immunopathology, needs to be better understood for successful immunotherapy of liver diseases. Here we show that a variable proportion of CD8+ T cells compartmentalized in the human liver co-stain for CD14 and other prototypic myeloid membrane proteins and are enriched in close proximity to CD14high myeloid cells in hepatic zone 2. CD14+CD8+ T cells preferentially accumulate within the donor pool in liver allografts, among hepatic virus-specific and tumour-infiltrating responses, and in cirrhotic ascites. CD14+CD8+ T cells exhibit increased turnover, activation and constitutive immunomodulatory features with high homeostatic IL-10 and IL-2 production ex vivo, and enhanced antiviral/anti-tumour effector function after TCR engagement. This CD14+CD8+ T cell profile can be recapitulated by the acquisition of membrane proteins-including the lipopolysaccharide receptor complex-from mononuclear phagocytes, resulting in augmented tumour killing by TCR-redirected T cells in vitro. CD14+CD8+ T cells express integrins and chemokine receptors that favour interactions with the local stroma, which can promote their induction through CXCL12. Lipopolysaccharide can also increase the frequency of CD14+CD8+ T cells in vitro and in vivo, and skew their function towards the production of chemotactic and regenerative cytokines. Thus, bacterial products in the gut-liver axis and tissue stromal factors can tune liver immunity by driving myeloid instruction of CD8+ T cells with immunomodulatory ability.


Subject(s)
CD8-Positive T-Lymphocytes , Immune Tolerance , Lipopolysaccharide Receptors , Lipopolysaccharides , Liver , Myeloid Cells , Humans , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasms/immunology , Neoplasms/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Immune Tolerance/drug effects , Immune Tolerance/immunology , Liver/drug effects , Liver/immunology , Liver/pathology , Liver/virology , Interleukin-2/biosynthesis , Interleukin-2/immunology , Chemotaxis, Leukocyte , Bacteria/immunology , Intestines/immunology , Intestines/microbiology
10.
Immunity ; 50(2): 493-504.e7, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30737144

ABSTRACT

Non-lymphoid tissues (NLTs) harbor a pool of adaptive immune cells with largely unexplored phenotype and development. We used single-cell RNA-seq to characterize 35,000 CD4+ regulatory (Treg) and memory (Tmem) T cells in mouse skin and colon, their respective draining lymph nodes (LNs) and spleen. In these tissues, we identified Treg cell subpopulations with distinct degrees of NLT phenotype. Subpopulation pseudotime ordering and gene kinetics were consistent in recruitment to skin and colon, yet the initial NLT-priming in LNs and the final stages of NLT functional adaptation reflected tissue-specific differences. Predicted kinetics were recapitulated using an in vivo melanoma-induction model, validating key regulators and receptors. Finally, we profiled human blood and NLT Treg and Tmem cells, and identified cross-mammalian conserved tissue signatures. In summary, we describe the relationship between Treg cell heterogeneity and recruitment to NLTs through the combined use of computational prediction and in vivo validation.


Subject(s)
Adaptation, Physiological/immunology , Single-Cell Analysis/methods , T-Lymphocytes, Regulatory/immunology , Transcriptome/immunology , Adaptation, Physiological/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/immunology , Colon/immunology , Colon/metabolism , Humans , Immunologic Memory/genetics , Immunologic Memory/immunology , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Mice, Transgenic , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Skin/immunology , Skin/metabolism , Spleen/immunology , Spleen/metabolism , T-Lymphocytes, Regulatory/metabolism
11.
Nature ; 607(7919): 540-547, 2022 07.
Article in English | MEDLINE | ID: mdl-35794482

ABSTRACT

Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.


Subject(s)
Cell Lineage , Germ Cells , Ovary , Sex Differentiation , Single-Cell Analysis , Testis , Animals , Chromatin/genetics , Chromatin/metabolism , Female , Germ Cells/cytology , Germ Cells/metabolism , Granulosa Cells/cytology , Granulosa Cells/metabolism , Humans , Immunoglobulins , Macrophages/metabolism , Male , Membrane Glycoproteins , Membrane Proteins , Mice , Microscopy, Fluorescence , Ovary/cytology , Ovary/embryology , PAX8 Transcription Factor , Pregnancy , Pregnancy Trimester, First , Pregnancy Trimester, Second , Receptors, Immunologic , Sex Differentiation/genetics , Testis/cytology , Testis/embryology , Transcriptome
12.
Nature ; 602(7896): 321-327, 2022 02.
Article in English | MEDLINE | ID: mdl-34937051

ABSTRACT

It is not fully understood why COVID-19 is typically milder in children1-3. Here, to examine the differences between children and adults in their response to SARS-CoV-2 infection, we analysed paediatric and adult patients with COVID-19 as well as healthy control individuals (total n = 93) using single-cell multi-omic profiling of matched nasal, tracheal, bronchial and blood samples. In the airways of healthy paediatric individuals, we observed cells that were already in an interferon-activated state, which after SARS-CoV-2 infection was further induced especially in airway immune cells. We postulate that higher paediatric innate interferon responses restrict viral replication and disease progression. The systemic response in children was characterized by increases in naive lymphocytes and a depletion of natural killer cells, whereas, in adults, cytotoxic T cells and interferon-stimulated subpopulations were significantly increased. We provide evidence that dendritic cells initiate interferon signalling in early infection, and identify epithelial cell states associated with COVID-19 and age. Our matching nasal and blood data show a strong interferon response in the airways with the induction of systemic interferon-stimulated populations, which were substantially reduced in paediatric patients. Together, we provide several mechanisms that explain the milder clinical syndrome observed in children.


Subject(s)
COVID-19/blood , COVID-19/immunology , Dendritic Cells/immunology , Interferons/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Adult , Bronchi/immunology , Bronchi/virology , COVID-19/pathology , Chicago , Cohort Studies , Disease Progression , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/virology , Female , Humans , Immunity, Innate , London , Male , Nasal Mucosa/immunology , Nasal Mucosa/virology , SARS-CoV-2/growth & development , Single-Cell Analysis , Trachea/virology , Young Adult
13.
Article in English | MEDLINE | ID: mdl-38594932

ABSTRACT

The development and deployment of single-cell genomic technologies have driven a resolution revolution in our understanding of the immune system, providing unprecedented insight into the diversity of immune cells present throughout the body and their function in health and disease. Waldeyer's ring is the collective name for the lymphoid tissue aggregations of the upper aerodigestive tract, comprising the palatine, pharyngeal (adenoids), lingual, and tubal tonsils. These tonsils are the first immune sentinels encountered by ingested and inhaled antigens and are responsible for mounting the first wave of adaptive immune response. An effective mucosal immune response is critical to neutralizing infection in the upper airway and preventing systemic spread, and dysfunctional immune responses can result in ear, nose, and throat pathologies. This review uses Waldeyer's ring to demonstrate how single-cell technologies are being applied to advance our understanding of the immune system and highlight directions for future research.

14.
Nature ; 592(7852): 80-85, 2021 04.
Article in English | MEDLINE | ID: mdl-33692543

ABSTRACT

Placentas can exhibit chromosomal aberrations that are absent from the fetus1. The basis of this genetic segregation, which is known as confined placental mosaicism, remains unknown. Here we investigated the phylogeny of human placental cells as reconstructed from somatic mutations, using whole-genome sequencing of 86 bulk placental samples (with a median weight of 28 mg) and of 106 microdissections of placental tissue. We found that every bulk placental sample represents a clonal expansion that is genetically distinct, and exhibits a genomic landscape akin to that of childhood cancer in terms of mutation burden and mutational imprints. To our knowledge, unlike any other healthy human tissue studied so far, the placental genomes often contained changes in copy number. We reconstructed phylogenetic relationships between tissues from the same pregnancy, which revealed that developmental bottlenecks genetically isolate placental tissues by separating trophectodermal lineages from lineages derived from the inner cell mass. Notably, there were some cases with full segregation-within a few cell divisions of the zygote-of placental lineages and lineages derived from the inner cell mass. Such early embryonic bottlenecks may enable the normalization of zygotic aneuploidy. We observed direct evidence for this in a case of mosaic trisomic rescue. Our findings reveal extensive mutagenesis in placental tissues and suggest that mosaicism is a typical feature of placental development.


Subject(s)
Mosaicism , Mutagenesis , Mutation , Placenta/metabolism , Biopsy , Blastocyst Inner Cell Mass/cytology , Female , Genome, Human/genetics , Humans , Mesoderm/cytology , Mutation Rate , Placenta/cytology , Pregnancy , Trisomy/genetics , Trophoblasts/cytology , Trophoblasts/metabolism , Zygote/cytology
15.
Nature ; 597(7875): 196-205, 2021 09.
Article in English | MEDLINE | ID: mdl-34497388

ABSTRACT

The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.


Subject(s)
Cell Movement , Cell Tracking , Cells/cytology , Developmental Biology/methods , Embryo, Mammalian/cytology , Fetus/cytology , Information Dissemination , Organogenesis , Adult , Animals , Atlases as Topic , Cell Culture Techniques , Cell Survival , Data Visualization , Female , Humans , Imaging, Three-Dimensional , Male , Models, Animal , Organogenesis/genetics , Organoids/cytology , Stem Cells/cytology
16.
Nature ; 597(7875): 250-255, 2021 09.
Article in English | MEDLINE | ID: mdl-34497389

ABSTRACT

The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease.


Subject(s)
Aging , Enteric Nervous System/cytology , Fetus/cytology , Health , Intestines/cytology , Intestines/growth & development , Lymph Nodes/cytology , Lymph Nodes/growth & development , Adult , Animals , Child , Crohn Disease/pathology , Datasets as Topic , Enteric Nervous System/anatomy & histology , Enteric Nervous System/embryology , Enteric Nervous System/growth & development , Epithelial Cells/cytology , Female , Fetus/anatomy & histology , Fetus/embryology , Humans , Intestines/embryology , Intestines/innervation , Lymph Nodes/embryology , Lymph Nodes/pathology , Mice , Mice, Inbred C57BL , Organogenesis , Receptors, IgG/metabolism , Signal Transduction , Spatio-Temporal Analysis , Time Factors
17.
Proc Natl Acad Sci U S A ; 121(2): e2313326120, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38165934

ABSTRACT

Our understanding of how human skin cells differ according to anatomical site and tumour formation is limited. To address this, we have created a multiscale spatial atlas of healthy skin and basal cell carcinoma (BCC), incorporating in vivo optical coherence tomography, single-cell RNA sequencing, spatial global transcriptional profiling, and in situ sequencing. Computational spatial deconvolution and projection revealed the localisation of distinct cell populations to specific tissue contexts. Although cell populations were conserved between healthy anatomical sites and in BCC, mesenchymal cell populations including fibroblasts and pericytes retained signatures of developmental origin. Spatial profiling and in silico lineage tracing support a hair follicle origin for BCC and demonstrate that cancer-associated fibroblasts are an expansion of a POSTN+ subpopulation associated with hair follicles in healthy skin. RGS5+ pericytes are also expanded in BCC suggesting a role in vascular remodelling. We propose that the identity of mesenchymal cell populations is regulated by signals emanating from adjacent structures and that these signals are repurposed to promote the expansion of skin cancer stroma. The resource we have created is publicly available in an interactive format for the research community.


Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Humans , Skin Neoplasms/pathology , Skin/pathology , Hair Follicle
18.
Immunol Rev ; 316(1): 104-119, 2023 07.
Article in English | MEDLINE | ID: mdl-37144705

ABSTRACT

The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.


Subject(s)
Memory T Cells , Neoplasms , Humans , Immunologic Memory , Skin , Phenotype , CD8-Positive T-Lymphocytes
19.
PLoS Pathog ; 20(6): e1012351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924030

ABSTRACT

AXL+ Siglec-6+ dendritic cells (ASDC) are novel myeloid DCs which can be subdivided into CD11c+ and CD123+ expressing subsets. We showed for the first time that these two ASDC subsets are present in inflamed human anogenital tissues where HIV transmission occurs. Their presence in inflamed tissues was supported by single cell RNA analysis of public databases of such tissues including psoriasis diseased skin and colorectal cancer. Almost all previous studies have examined ASDCs as a combined population. Our data revealed that the two ASDC subsets differ markedly in their functions when compared with each other and to pDCs. Relative to their cell functions, both subsets of blood ASDCs but not pDCs expressed co-stimulatory and maturation markers which were more prevalent on CD11c+ ASDCs, thus inducing more T cell proliferation and activation than their CD123+ counterparts. There was also a significant polarisation of naïve T cells by both ASDC subsets toward Th2, Th9, Th22, Th17 and Treg but less toward a Th1 phenotype. Furthermore, we investigated the expression of chemokine receptors that facilitate ASDCs and pDCs migration from blood to inflamed tissues, their HIV binding receptors, and their interactions with HIV and CD4 T cells. For HIV infection, within 2 hours of HIV exposure, CD11c+ ASDCs showed a trend in more viral transfer to T cells than CD123+ ASDCs and pDCs for first phase transfer. However, for second phase transfer, CD123+ ASDCs showed a trend in transferring more HIV than CD11c+ ASDCs and there was no viral transfer from pDCs. As anogenital inflammation is a prerequisite for HIV transmission, strategies to inhibit ASDC recruitment into inflamed tissues and their ability to transmit HIV to CD4 T cells should be considered.


Subject(s)
Dendritic Cells , HIV Infections , Humans , HIV Infections/immunology , HIV Infections/metabolism , HIV Infections/virology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Axl Receptor Tyrosine Kinase , Male , HIV-1/immunology , Female , Myeloid Cells/metabolism , Myeloid Cells/immunology , Middle Aged , Adult
20.
Semin Immunol ; 55: 101545, 2021 06.
Article in English | MEDLINE | ID: mdl-34865933

ABSTRACT

The global COVID-19 pandemic has caused substantial morbidity and mortality to humanity. Remarkable progress has been made in understanding both the innate and adaptive mechanisms involved in the host response to the causative SARS-CoV-2 virus, but much remains to be discovered. Robust upper airway defenses are critical in restricting SARS-CoV-2 replication and propagation. Further, the nasal abundance of viral uptake receptor, ACE2, and the host epithelial transcriptional landscape, are associated with differential disease outcomes across different patient cohorts. The adaptive host response to systemic COVID-19 is heterogeneous and complex. Blunted responses to interferon and robust cytokine generation are hallmarks of the disease, particularly at the advanced stages. Excessive immune cell influx into tissues can lead to substantial collateral damage to the host akin to sepsis. This review offers a contemporary summary of these mechanisms of disease and highlights potential avenues for diagnostic and therapeutic development. These include improved disease stratification, targeting effectors of immune-mediated tissue damage, and blunting of immune cell-mediated tissue damage.


Subject(s)
Adaptive Immunity , COVID-19 , Cytokines/immunology , Angiotensin-Converting Enzyme 2 , COVID-19/immunology , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL