Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 22(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806499

ABSTRACT

Diabetic nephropathy (DN) ranks among the most detrimental long-term effects of diabetes, affecting more than 30% of all patients. Within the diseased kidney, intraglomerular mesangial cells play a key role in facilitating the pro-fibrotic turnover of extracellular matrix components and a progredient glomerular hyperproliferation. These pathological effects are in part caused by an impaired functionality of soluble guanylate cyclase (sGC) and a consequentially reduced synthesis of anti-fibrotic messenger 3',5'-cyclic guanosine monophosphate (cGMP). Bay 58-2667 (cinaciguat) is able to re-activate defective sGC; however, the drug suffers from poor bioavailability and its systemic administration is linked to adverse events such as severe hypotension, which can hamper the therapeutic effect. In this study, cinaciguat was therefore efficiently encapsulated into virus-mimetic nanoparticles (NPs) that are able to specifically target renal mesangial cells and therefore increase the intracellular drug accumulation. NP-assisted drug delivery thereby increased in vitro potency of cinaciguat-induced sGC stabilization and activation, as well as the related downstream signaling 4- to 5-fold. Additionally, administration of drug-loaded NPs provided a considerable suppression of the non-canonical transforming growth factor ß (TGF-ß) signaling pathway and the resulting pro-fibrotic remodeling by 50-100%, making the system a promising tool for a more refined therapy of DN and other related kidney pathologies.


Subject(s)
Benzoates/administration & dosage , Drug Delivery Systems , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Soluble Guanylyl Cyclase/metabolism , Animals , Benzoates/pharmacokinetics , Biomimetic Materials , Cells, Cultured , Cyclic GMP/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Enzyme Activation/drug effects , Enzyme Stability/drug effects , Fibrosis , Humans , Mesangial Cells/pathology , Models, Biological , Nanoparticles/administration & dosage , Rats , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism
2.
Int J Mol Sci ; 19(4)2018 Apr 12.
Article in English | MEDLINE | ID: mdl-29649180

ABSTRACT

Nitric oxide (NO/cyclic guanosine monophosphate (cGMP)-regulated cellular mechanisms are involved in a variety of (patho-) physiological processes. One of the main effector molecules in this system, proteinkinase G (PKG), serves as a molecular switch by phosphorylating different target proteins and thereby turning them on or off. To date, only a few interaction partners of PKG have been described although the identification of protein-protein interactions (PPI) is indispensable for the understanding of cellular processes and diseases. Conventionally used methods to detect PPIs exhibit several disadvantages, e.g., co-immunoprecipitations, which depend on suitable high-affinity antibodies. Therefore, we established a cell-based protein-fragment complementation assay (PCA) for the identification of PKG target proteins. Here, a reporter protein (click beetle luciferase) is split into two fragments and fused to two different possible interaction partners. If interaction occurs, the reporter protein is functionally complemented and the catalyzed reaction can then be quantitatively measured. By using this technique, we confirmed the regulator of G-Protein signaling 2 (RGS2) as an interaction partner of PKGIα (a PKG-isoform) following stimulation with 8-Br-cGMP and 8-pCPT-cGMP. Hence, our results support the conclusion that the established approach could serve as a novel tool for the rapid, easy and cost-efficient detection of novel PKG target proteins.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Luciferases/metabolism , Protein Interaction Mapping/methods , RGS Proteins/metabolism , Animals , COS Cells , Chlorocebus aethiops , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Mice , Nitric Oxide/metabolism , Phosphorylation
4.
Br J Pharmacol ; 179(11): 2460-2475, 2022 06.
Article in English | MEDLINE | ID: mdl-33651375

ABSTRACT

BACKGROUND AND PURPOSE: Diabetic nephropathy is the leading cause for end-stage renal disease worldwide. Until now, there is no specific therapy available. Standard treatment with inhibitors of the renin-angiotensin system just slows down progression. However, targeting the NO/sGC/cGMP pathway using sGC activators does prevent kidney damage. Thus, we investigated if the sGC activator cinaciguat was beneficial in a mouse model of diabetic nephropathy, and we analysed how mesangial cells (MCs) were affected by related conditions in cell culture. EXPERIMENTAL APPROACH: Type 1 diabetes was induced with streptozotocin in wild-type and endothelial NOS knockout (eNOS KO) mice for 8 or 12 weeks.. Half of these mice received cinaciguat in their chow for the last 4 weeks. Kidneys from the diabetic mice were analysed with histochemical assays and by RT-PCR and western blotting. . Additionally, primary murine MCs under diabetic conditions were stimulated with 8-Br-cGMP or cinaciguat to activate the sGC/cGMP pathway. KEY RESULTS: The diabetic eNOS KO mice developed most characteristics of diabetic nephropathy, most marked at 12 weeks. Treatment with cinaciguat markedly improved GFR, serum creatinine, mesangial expansion and kidney fibrosis in these animals. We determined expression levels of related signalling proteins. Thrombospondin 1, a key mediator in kidney diseases, was strongly up-regulated under diabetic conditions and this increase was suppressed by activation of sGC/cGMP signalling. CONCLUSION AND IMPLICATIONS: Activation of the NO/sGC/PKG pathway with cinaciguat was beneficial in a model of diabetic nephropathy. Activators of sGC might be an appropriate therapy option in patients with Type 1 diabetes. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Animals , Benzoates , Cyclic GMP/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Female , Guanylate Cyclase/metabolism , Humans , Kidney/metabolism , Male , Mice , Nitric Oxide/metabolism , Soluble Guanylyl Cyclase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL