Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
Add more filters

Publication year range
1.
Hum Brain Mapp ; 45(4): e26641, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488470

ABSTRACT

Gene expression varies across the brain. This spatial patterning denotes specialised support for particular brain functions. However, the way that a given gene's expression fluctuates across the brain may be governed by general rules. Quantifying patterns of spatial covariation across genes would offer insights into the molecular characteristics of brain areas supporting, for example, complex cognitive functions. Here, we use principal component analysis to separate general and unique gene regulatory associations with cortical substrates of cognition. We find that the region-to-region variation in cortical expression profiles of 8235 genes covaries across two major principal components: gene ontology analysis suggests these dimensions are characterised by downregulation and upregulation of cell-signalling/modification and transcription factors. We validate these patterns out-of-sample and across different data processing choices. Brain regions more strongly implicated in general cognitive functioning (g; 3 cohorts, total meta-analytic N = 39,519) tend to be more balanced between downregulation and upregulation of both major components (indicated by regional component scores). We then identify a further 29 genes as candidate cortical spatial correlates of g, beyond the patterning of the two major components (|ß| range = 0.18 to 0.53). Many of these genes have been previously associated with clinical neurodegenerative and psychiatric disorders, or with other health-related phenotypes. The results provide insights into the cortical organisation of gene expression and its association with individual differences in cognitive functioning.


Subject(s)
Brain , Mental Disorders , Humans , Brain/physiology , Cognition/physiology , Brain Mapping , Mental Disorders/metabolism , Gene Expression , Magnetic Resonance Imaging
2.
Eur Respir J ; 63(1)2024 01.
Article in English | MEDLINE | ID: mdl-38097206

ABSTRACT

BACKGROUND: Preserved ratio impaired spirometry (PRISm) is defined as a forced expiratory volume in 1 s (FEV1) <80% predicted and FEV1/forced vital capacity ≥0.70. PRISm is associated with respiratory symptoms and comorbidities. Our objective was to discover novel genetic signals for PRISm and see if they provide insight into the pathogenesis of PRISm and associated comorbidities. METHODS: We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants (Stage 1), and selected single nucleotide polymorphisms (SNPs) reaching genome-wide significance for replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to determine top SNPs. We used cross-trait linkage disequilibrium score regression to estimate genome-wide genetic correlation between PRISm and pulmonary and extrapulmonary traits. Phenome-wide association studies of top SNPs were performed. RESULTS: 22 signals reached significance in the joint meta-analysis, including four signals novel for lung function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg=0.62, p<0.001) was observed, and genetic correlation with type 2 diabetes (rg=0.12, p=0.007). Phenome-wide association studies showed that 18 of 22 signals were associated with diabetic traits and seven with blood pressure traits. CONCLUSION: This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the signals, rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B), have not been described in association with lung function before, demonstrating the utility of using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly correlated with risk of both other lung diseases and extrapulmonary comorbidity.


Subject(s)
Diabetes Mellitus, Type 2 , Pulmonary Disease, Chronic Obstructive , Humans , Genome-Wide Association Study , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Diabetes Mellitus, Type 2/genetics , Lung , Forced Expiratory Volume/genetics , Spirometry , Vital Capacity
3.
RNA ; 28(4): 523-540, 2022 04.
Article in English | MEDLINE | ID: mdl-35082143

ABSTRACT

Alternative splicing transitions occur during organ development, and, in numerous diseases, splicing programs revert to fetal isoform expression. We previously found that extensive splicing changes occur during postnatal mouse heart development in genes encoding proteins involved in vesicle-mediated trafficking. However, the regulatory mechanisms of this splicing-trafficking network are unknown. Here, we found that membrane trafficking genes are alternatively spliced in a tissue-specific manner, with striated muscles exhibiting the highest levels of alternative exon inclusion. Treatment of differentiated muscle cells with chromatin-modifying drugs altered exon inclusion in muscle cells. Examination of several RNA-binding proteins revealed that the poly-pyrimidine tract binding protein 1 (PTBP1) and quaking regulate splicing of trafficking genes during myogenesis, and that removal of PTBP1 motifs prevented PTBP1 from binding its RNA target. These findings enhance our understanding of developmental splicing regulation of membrane trafficking proteins which might have implications for muscle disease pathogenesis.


Subject(s)
Alternative Splicing , Polypyrimidine Tract-Binding Protein , Animals , Exons , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Mice , Muscle Development/genetics , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism
4.
Mol Psychiatry ; 28(3): 1256-1271, 2023 03.
Article in English | MEDLINE | ID: mdl-36481934

ABSTRACT

Discovering why some people's cognitive abilities decline more than others is a key challenge for cognitive ageing research. The most effective strategy may be to address multiple risk factors from across the life-course simultaneously in relation to robust longitudinal cognitive data. We conducted a 12-year follow-up of 1091 (at age 70) men and women from the longitudinal Lothian Birth Cohort 1936 study. Comprehensive repeated cognitive measures of visuospatial ability, processing speed, memory, verbal ability, and a general cognitive factor were collected over five assessments (age 70, 73, 76, 79, and 82 years) and analysed using multivariate latent growth curve modelling. Fifteen life-course variables were used to predict variation in cognitive ability levels at age 70 and cognitive slopes from age 70 to 82. Only APOE e4 carrier status was found to be reliably informative of general- and domain-specific cognitive decline, despite there being many life-course correlates of cognitive level at age 70. APOE e4 carriers had significantly steeper slopes across all three fluid cognitive domains compared with non-carriers, especially for memory (ß = -0.234, p < 0.001) and general cognitive function (ß = -0.246, p < 0.001), denoting a widening gap in cognitive functioning with increasing age. Our findings suggest that when many other candidate predictors of cognitive ageing slope are entered en masse, their unique contributions account for relatively small proportions of variance, beyond variation in APOE e4 status. We conclude that APOE e4 status is important for identifying those at greater risk for accelerated cognitive ageing, even among ostensibly healthy individuals.


Subject(s)
Cognitive Aging , Cognitive Dysfunction , Male , Humans , Female , Aged , Aged, 80 and over , Birth Cohort , Cognition , Apolipoproteins E , Life Style , Apolipoprotein E4 , Neuropsychological Tests , Longitudinal Studies
5.
PLoS Genet ; 17(7): e1009640, 2021 07.
Article in English | MEDLINE | ID: mdl-34214075

ABSTRACT

Heterotrimeric G proteins were originally discovered through efforts to understand the effects of hormones, such as glucagon and epinephrine, on glucose metabolism. On the other hand, many cellular metabolites, including glucose, serve as ligands for G protein-coupled receptors. Here we investigate the consequences of glucose-mediated receptor signaling, and in particular the role of a Gα subunit Gpa2 and a non-canonical Gß subunit, known as Asc1 in yeast and RACK1 in animals. Asc1/RACK1 is of particular interest because it has multiple, seemingly unrelated, functions in the cell. The existence of such "moonlighting" operations has complicated the determination of phenotype from genotype. Through a comparative analysis of individual gene deletion mutants, and by integrating transcriptomics and metabolomics measurements, we have determined the relative contributions of the Gα and Gß protein subunits to glucose-initiated processes in yeast. We determined that Gpa2 is primarily involved in regulating carbohydrate metabolism while Asc1 is primarily involved in amino acid metabolism. Both proteins are involved in regulating purine metabolism. Of the two subunits, Gpa2 regulates a greater number of gene transcripts and was particularly important in determining the amplitude of response to glucose addition. We conclude that the two G protein subunits regulate distinct but complementary processes downstream of the glucose-sensing receptor, as well as processes that lead ultimately to changes in cell growth and metabolism.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , GTP-Binding Proteins/metabolism , Glucose/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adaptor Proteins, Signal Transducing/genetics , Carbohydrate Metabolism , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Proteins/genetics , Gene Expression Profiling , Metabolomics , Mutation , Purines/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction
6.
Circulation ; 145(14): 1040-1052, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35050683

ABSTRACT

BACKGROUND: White matter hyperintensities (WMH), identified on T2-weighted magnetic resonance images of the human brain as areas of enhanced brightness, are a major risk factor of stroke, dementia, and death. There are no large-scale studies testing associations between WMH and circulating metabolites. METHODS: We studied up to 9290 individuals (50.7% female, average age 61 years) from 15 populations of 8 community-based cohorts. WMH volume was quantified from T2-weighted or fluid-attenuated inversion recovery images or as hypointensities on T1-weighted images. Circulating metabolomic measures were assessed with mass spectrometry and nuclear magnetic resonance spectroscopy. Associations between WMH and metabolomic measures were tested by fitting linear regression models in the pooled sample and in sex-stratified and statin treatment-stratified subsamples. Our basic models were adjusted for age, sex, age×sex, and technical covariates, and our fully adjusted models were also adjusted for statin treatment, hypertension, type 2 diabetes, smoking, body mass index, and estimated glomerular filtration rate. Population-specific results were meta-analyzed using the fixed-effect inverse variance-weighted method. Associations with false discovery rate (FDR)-adjusted P values (PFDR)<0.05 were considered significant. RESULTS: In the meta-analysis of results from the basic models, we identified 30 metabolomic measures associated with WMH (PFDR<0.05), 7 of which remained significant in the fully adjusted models. The most significant association was with higher level of hydroxyphenylpyruvate in men (PFDR.full.adj=1.40×10-7) and in both the pooled sample (PFDR.full.adj=1.66×10-4) and statin-untreated (PFDR.full.adj=1.65×10-6) subsample. In men, hydroxyphenylpyruvate explained 3% to 14% of variance in WMH. In men and the pooled sample, WMH were also associated with lower levels of lysophosphatidylcholines and hydroxysphingomyelins and a larger diameter of low-density lipoprotein particles, likely arising from higher triglyceride to total lipids and lower cholesteryl ester to total lipids ratios within these particles. In women, the only significant association was with higher level of glucuronate (PFDR=0.047). CONCLUSIONS: Circulating metabolomic measures, including multiple lipid measures (eg, lysophosphatidylcholines, hydroxysphingomyelins, low-density lipoprotein size and composition) and nonlipid metabolites (eg, hydroxyphenylpyruvate, glucuronate), associate with WMH in a general population of middle-aged and older adults. Some metabolomic measures show marked sex specificities and explain a sizable proportion of WMH variance.


Subject(s)
Diabetes Mellitus, Type 2 , White Matter , Aged , Brain/pathology , Diabetes Mellitus, Type 2/pathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Metabolome , Middle Aged , White Matter/diagnostic imaging
7.
Hum Mol Genet ; 30(5): 393-409, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33517400

ABSTRACT

Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10-11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10-10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10-122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.


Subject(s)
Genome-Wide Association Study , HLA-DRB1 Chains/genetics , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin-1/genetics , Interleukin-6/genetics , Receptors, Interleukin-6/genetics , Cohort Studies , Gene Expression Regulation , Genetic Loci , Genetic Predisposition to Disease , Humans , Interleukin-6/blood , Polymorphism, Single Nucleotide , White People/genetics
8.
RNA Biol ; 20(1): 469-481, 2023 01.
Article in English | MEDLINE | ID: mdl-37516934

ABSTRACT

Histone mRNA degradation is controlled by the unique 3' stem-loop of histone mRNA and the stem-loop binding protein (SLBP). As part of this process, the 3' stem-loop is trimmed by the histone-specific 3' exonuclease (3'hExo) and uridylated by the terminal uridylyl transferase 7 (TUT7), creating partially degraded intermediates with short uridylations. The role of these uridylations in degradation is not fully understood. Our work examines changes in the stability of the ternary complex created by trimming and uridylation of the stem-loop to better understand the role of this process in the histone mRNA life cycle. In this study, we used fluorescence polarization and electrophoretic mobility shift assays to demonstrate that both SLBP and 3'hExo can bind to uridylated and partially degraded stem-loop intermediates, although with lower affinity. We further characterized this complex by performing 1-µs molecular dynamics simulations using the AMBER force field and Nanoscale Molecular Dynamics (NAMD). These simulations show that while uridylation helps maintain the overall shape of the stem-loop, the combination of uridylation and dephosphorylation of the TPNK motif in SLBP disrupts key RNA-protein interactions. They also demonstrate that uridylation allows 3'hExo to maintain contact with the stem-loop after partial degradation and plays a role in disrupting key base pairs in partially degraded histone mRNA intermediates. Together, these experiments and simulations suggest that trimming by 3'hExo, uridylation, and SLBP dephosphorylation weakens both RNA-protein interactions and the stem-loop itself. Our results further elucidate the role of uridylation and SLBP dephosphorylation in the early stages of histone mRNA degradation.


Subject(s)
Histones , Molecular Dynamics Simulation , Electrophoretic Mobility Shift Assay , RNA, Messenger/genetics
9.
Brain ; 145(6): 1992-2007, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35511193

ABSTRACT

Cerebral small vessel disease is a leading cause of stroke and a major contributor to cognitive decline and dementia, but our understanding of specific genes underlying the cause of sporadic cerebral small vessel disease is limited. We report a genome-wide association study and a whole-exome association study on a composite extreme phenotype of cerebral small vessel disease derived from its most common MRI features: white matter hyperintensities and lacunes. Seventeen population-based cohorts of older persons with MRI measurements and genome-wide genotyping (n = 41 326), whole-exome sequencing (n = 15 965), or exome chip (n = 5249) data contributed 13 776 and 7079 extreme small vessel disease samples for the genome-wide association study and whole-exome association study, respectively. The genome-wide association study identified significant association of common variants in 11 loci with extreme small vessel disease, of which the chr12q24.11 locus was not previously reported to be associated with any MRI marker of cerebral small vessel disease. The whole-exome association study identified significant associations of extreme small vessel disease with common variants in the 5' UTR region of EFEMP1 (chr2p16.1) and one probably damaging common missense variant in TRIM47 (chr17q25.1). Mendelian randomization supports the causal association of extensive small vessel disease severity with increased risk of stroke and Alzheimer's disease. Combined evidence from summary-based Mendelian randomization studies and profiling of human loss-of-function allele carriers showed an inverse relation between TRIM47 expression in the brain and blood vessels and extensive small vessel disease severity. We observed significant enrichment of Trim47 in isolated brain vessel preparations compared to total brain fraction in mice, in line with the literature showing Trim47 enrichment in brain endothelial cells at single cell level. Functional evaluation of TRIM47 by small interfering RNAs-mediated knockdown in human brain endothelial cells showed increased endothelial permeability, an important hallmark of cerebral small vessel disease pathology. Overall, our comprehensive gene-mapping study and preliminary functional evaluation suggests a putative role of TRIM47 in the pathophysiology of cerebral small vessel disease, making it an important candidate for extensive in vivo explorations and future translational work.


Subject(s)
Brain Ischemia , Cerebral Small Vessel Diseases , Stroke , Animals , Brain Ischemia/complications , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/genetics , Endothelial Cells/pathology , Genome-Wide Association Study , Mice , Stroke/complications
10.
Am J Respir Crit Care Med ; 206(3): 321-336, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35536696

ABSTRACT

Rationale: Methylation integrates factors present at birth and modifiable across the lifespan that can influence pulmonary function. Studies are limited in scope and replication. Objectives: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function. Methods: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina 450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multiancestry epigenome-wide meta-analyses (total of 17,503 individuals; 14,761 European, 2,549 African, and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics. Measurements and Main Results: We identified 1,267 CpGs (1,042 genes) differentially methylated (false discovery rate, <0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240 novel and 73 also related to chronic obstructive pulmonary disease (1,787 cases). We found 294 CpGs unique to European or African ancestry and 395 CpGs unique to never or ever smokers. The majority of significant CpGs correlated with nearby gene expression in blood. Findings were enriched in key regulatory elements for gene function, including accessible chromatin elements, in both blood and lung. Sixty-nine implicated genes are targets of investigational or approved drugs. One example novel gene highlighted by integrative epigenomic and druggable target analysis is TNFRSF4. Mendelian randomization and colocalization analyses suggest that epigenome-wide association study signals capture causal regulatory genomic loci. Conclusions: We identified numerous novel loci differentially methylated in relation to pulmonary function; few were detected in large genome-wide association studies. Integrative analyses highlight functional relevance and potential therapeutic targets. This comprehensive discovery of potentially modifiable, novel lung function loci expands knowledge gained from genetic studies, providing insights into lung pathogenesis.


Subject(s)
DNA Methylation , Epigenome , CpG Islands , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Epigenomics , Genome-Wide Association Study , Humans , Infant, Newborn , Lung
11.
J Am Soc Nephrol ; 33(3): 511-529, 2022 03.
Article in English | MEDLINE | ID: mdl-35228297

ABSTRACT

BACKGROUND: Uromodulin, the most abundant protein excreted in normal urine, plays major roles in kidney physiology and disease. The mechanisms regulating the urinary excretion of uromodulin remain essentially unknown. METHODS: We conducted a meta-analysis of genome-wide association studies for raw (uUMOD) and indexed to creatinine (uUCR) urinary levels of uromodulin in 29,315 individuals of European ancestry from 13 cohorts. We tested the distribution of candidate genes in kidney segments and investigated the effects of keratin-40 (KRT40) on uromodulin processing. RESULTS: Two genome-wide significant signals were identified for uUMOD: a novel locus (P 1.24E-08) over the KRT40 gene coding for KRT40, a type 1 keratin expressed in the kidney, and the UMOD-PDILT locus (P 2.17E-88), with two independent sets of single nucleotide polymorphisms spread over UMOD and PDILT. Two genome-wide significant signals for uUCR were identified at the UMOD-PDILT locus and at the novel WDR72 locus previously associated with kidney function. The effect sizes for rs8067385, the index single nucleotide polymorphism in the KRT40 locus, were similar for both uUMOD and uUCR. KRT40 colocalized with uromodulin and modulating its expression in thick ascending limb (TAL) cells affected uromodulin processing and excretion. CONCLUSIONS: Common variants in KRT40, WDR72, UMOD, and PDILT associate with the levels of uromodulin in urine. The expression of KRT40 affects uromodulin processing in TAL cells. These results, although limited by lack of replication, provide insights into the biology of uromodulin, the role of keratins in the kidney, and the influence of the UMOD-PDILT locus on kidney function.


Subject(s)
Genome-Wide Association Study , Kidney , Creatinine , Humans , Polymorphism, Single Nucleotide , Protein Disulfide-Isomerases/genetics , Uromodulin/genetics
12.
Alzheimers Dement ; 19(6): 2560-2574, 2023 06.
Article in English | MEDLINE | ID: mdl-36547260

ABSTRACT

INTRODUCTION: It remains unclear why age increases risk of Alzheimer's disease and why some people experience age-related cognitive decline in the absence of dementia. Here we test the hypothesis that resilience to molecular changes in synapses contribute to healthy cognitive ageing. METHODS: We examined post-mortem brain tissue from people in mid-life (n = 15), healthy ageing with either maintained cognition (n = 9) or lifetime cognitive decline (n = 8), and Alzheimer's disease (n = 13). Synapses were examined with high resolution imaging, proteomics, and RNA sequencing. Stem cell-derived neurons were challenged with Alzheimer's brain homogenate. RESULTS: Synaptic pathology increased, and expression of genes involved in synaptic signaling decreased between mid-life, healthy ageing and Alzheimer's. In contrast, brain tissue and neurons from people with maintained cognition during ageing exhibited decreases in synaptic signaling genes compared to people with cognitive decline. DISCUSSION: Efficient synaptic networks without pathological protein accumulation may contribute to maintained cognition during ageing.


Subject(s)
Alzheimer Disease , Cognitive Aging , Healthy Aging , Synapses , Cognition , Synapses/metabolism , Synapses/pathology , Brain/metabolism , Brain/pathology , Sequence Analysis, RNA , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurons/metabolism , Neurons/pathology , Synaptic Transmission , Postmortem Changes , Healthy Aging/metabolism , Healthy Aging/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Male , Female , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Gliosis/pathology
13.
Eur J Neurosci ; 56(9): 5637-5649, 2022 11.
Article in English | MEDLINE | ID: mdl-35362642

ABSTRACT

Inflammation and ageing-related DNA methylation patterns in the blood have been linked to a variety of morbidities, including cognitive decline and neurodegenerative disease. However, it is unclear how these blood-based patterns relate to patterns within the brain and how each associates with central cellular profiles. In this study, we profiled DNA methylation in both the blood and in five post mortem brain regions (BA17, BA20/21, BA24, BA46 and hippocampus) in 14 individuals from the Lothian Birth Cohort 1936. Microglial burdens were additionally quantified in the same brain regions. DNA methylation signatures of five epigenetic ageing biomarkers ('epigenetic clocks'), and two inflammatory biomarkers (methylation proxies for C-reactive protein and interleukin-6) were compared across tissues and regions. Divergent associations between the inflammation and ageing signatures in the blood and brain were identified, depending on region assessed. Four out of the five assessed epigenetic age acceleration measures were found to be highest in the hippocampus (ß range = 0.83-1.14, p ≤ 0.02). The inflammation-related DNA methylation signatures showed no clear variation across brain regions. Reactive microglial burdens were found to be highest in the hippocampus (ß = 1.32, p = 5 × 10-4 ); however, the only association identified between the blood- and brain-based methylation signatures and microglia was a significant positive association with acceleration of one epigenetic clock (termed DNAm PhenoAge) averaged over all five brain regions (ß = 0.40, p = 0.002). This work highlights a potential vulnerability of the hippocampus to epigenetic ageing and provides preliminary evidence of a relationship between DNA methylation signatures in the brain and differences in microglial burdens.


Subject(s)
DNA Methylation , Neurodegenerative Diseases , Humans , Microglia , Epigenesis, Genetic , Brain , Inflammation/genetics , Biomarkers
14.
Mol Psychiatry ; 26(8): 3806-3816, 2021 08.
Article in English | MEDLINE | ID: mdl-31796892

ABSTRACT

Individuals of the same chronological age exhibit disparate rates of biological ageing. Consequently, a number of methodologies have been proposed to determine biological age and primarily exploit variation at the level of DNA methylation (DNAm). A novel epigenetic clock, termed 'DNAm GrimAge' has outperformed its predecessors in predicting the risk of mortality as well as many age-related morbidities. However, the association between DNAm GrimAge and cognitive or neuroimaging phenotypes remains unknown. We explore these associations in the Lothian Birth Cohort 1936 (n = 709, mean age 73 years). Higher DNAm GrimAge was strongly associated with all-cause mortality over the eighth decade (Hazard Ratio per standard deviation increase in GrimAge: 1.81, P < 2.0 × 10-16). Higher DNAm GrimAge was associated with lower age 11 IQ (ß = -0.11), lower age 73 general cognitive ability (ß = -0.18), decreased brain volume (ß = -0.25) and increased brain white matter hyperintensities (ß = 0.17). There was tentative evidence for a longitudinal association between DNAm GrimAge and cognitive decline from age 70 to 79. Sixty-nine of 137 health- and brain-related phenotypes tested were significantly associated with GrimAge. Adjusting all models for childhood intelligence attenuated to non-significance a small number of associations (12/69 associations; 6 of which were cognitive traits), but not the association with general cognitive ability (33.9% attenuation). Higher DNAm GrimAge associates with lower cognitive ability and brain vascular lesions in older age, independently of early-life cognitive ability. This epigenetic predictor of mortality associates with different measures of brain health and may aid in the prediction of age-related cognitive decline.


Subject(s)
Birth Cohort , Epigenesis, Genetic , Aged , Aging/genetics , Brain/diagnostic imaging , Child , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Epigenomics , Humans
15.
Mol Psychiatry ; 26(6): 2663-2676, 2021 06.
Article in English | MEDLINE | ID: mdl-33414497

ABSTRACT

Genomic copy number variants (CNVs) are routinely identified and reported back to patients with neuropsychiatric disorders, but their quantitative effects on essential traits such as cognitive ability are poorly documented. We have recently shown that the effect size of deletions on cognitive ability can be statistically predicted using measures of intolerance to haploinsufficiency. However, the effect sizes of duplications remain unknown. It is also unknown if the effect of multigenic CNVs are driven by a few genes intolerant to haploinsufficiency or distributed across tolerant genes as well. Here, we identified all CNVs > 50 kilobases in 24,092 individuals from unselected and autism cohorts with assessments of general intelligence. Statistical models used measures of intolerance to haploinsufficiency of genes included in CNVs to predict their effect size on intelligence. Intolerant genes decrease general intelligence by 0.8 and 2.6 points of intelligence quotient when duplicated or deleted, respectively. Effect sizes showed no heterogeneity across cohorts. Validation analyses demonstrated that models could predict CNV effect sizes with 78% accuracy. Data on the inheritance of 27,766 CNVs showed that deletions and duplications with the same effect size on intelligence occur de novo at the same frequency. We estimated that around 10,000 intolerant and tolerant genes negatively affect intelligence when deleted, and less than 2% have large effect sizes. Genes encompassed in CNVs were not enriched in any GOterms but gene regulation and brain expression were GOterms overrepresented in the intolerant subgroup. Such pervasive effects on cognition may be related to emergent properties of the genome not restricted to a limited number of biological pathways.


Subject(s)
DNA Copy Number Variations , Genome , Cognition , DNA Copy Number Variations/genetics , Gene Dosage , Humans , Intelligence Tests
16.
Mol Psychiatry ; 26(11): 6293-6304, 2021 11.
Article in English | MEDLINE | ID: mdl-33859359

ABSTRACT

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 Pjoint < 5 × 10-8), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (Pint < 5 × 10-8). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (Pint = 2 × 10-6). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (Pint < 10-3). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.


Subject(s)
Genome-Wide Association Study , Hypertension , Blood Pressure/genetics , Genetic Loci/genetics , Humans , Hypertension/genetics , Polymorphism, Single Nucleotide/genetics , Sleep/genetics
17.
Mol Psychiatry ; 26(6): 2111-2125, 2021 06.
Article in English | MEDLINE | ID: mdl-32372009

ABSTRACT

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.


Subject(s)
Genome-Wide Association Study , Hypertension , Blood Pressure/genetics , Epistasis, Genetic , Genetic Loci , Humans , Hypertension/genetics , Polymorphism, Single Nucleotide
18.
Nature ; 533(7604): 539-42, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27225129

ABSTRACT

Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.


Subject(s)
Brain/metabolism , Educational Status , Fetus/metabolism , Gene Expression Regulation/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Alzheimer Disease/genetics , Bipolar Disorder/genetics , Cognition , Computational Biology , Gene-Environment Interaction , Humans , Molecular Sequence Annotation , Schizophrenia/genetics , United Kingdom
19.
PLoS Genet ; 15(11): e1008480, 2019 11.
Article in English | MEDLINE | ID: mdl-31765389

ABSTRACT

Human population isolates provide a snapshot of the impact of historical demographic processes on population genetics. Such data facilitate studies of the functional impact of rare sequence variants on biomedical phenotypes, as strong genetic drift can result in higher frequencies of variants that are otherwise rare. We present the first whole genome sequencing (WGS) study of the VIKING cohort, a representative collection of samples from the isolated Shetland population in northern Scotland, and explore how its genetic characteristics compare to a mainland Scottish population. Our analyses reveal the strong contributions played by the founder effect and genetic drift in shaping genomic variation in the VIKING cohort. About one tenth of all high-quality variants discovered are unique to the VIKING cohort or are seen at frequencies at least ten fold higher than in more cosmopolitan control populations. Multiple lines of evidence also suggest relaxation of purifying selection during the evolutionary history of the Shetland isolate. We demonstrate enrichment of ultra-rare VIKING variants in exonic regions and for the first time we also show that ultra-rare variants are enriched within regulatory regions, particularly promoters, suggesting that gene expression patterns may diverge relatively rapidly in human isolates.


Subject(s)
Demography , Genetic Variation/genetics , Genetics, Population , Regulatory Sequences, Nucleic Acid/genetics , 5' Untranslated Regions/genetics , Alleles , Chromatin/genetics , Europe , Exons/genetics , Founder Effect , Genetic Drift , Genome-Wide Association Study , Genomics , Humans , Phenotype , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Scotland , Whole Genome Sequencing
20.
Hum Mol Genet ; 28(15): 2615-2633, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31127295

ABSTRACT

Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.


Subject(s)
Arterial Pressure/genetics , Gene-Environment Interaction , Hypertension/genetics , Polymorphism, Genetic , Racial Groups/genetics , Smoking/adverse effects , Adolescent , Adult , Aged , Aged, 80 and over , Antiporters/genetics , Blood Pressure/genetics , Caspase 9/genetics , Ethnicity/genetics , Female , Genome-Wide Association Study , Humans , Hypertension/etiology , Male , Membrane Proteins/genetics , Middle Aged , Receptors, Vasopressin/genetics , Sulfate Transporters/genetics , Tumor Suppressor Proteins/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL