Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Cell ; 184(20): 5163-5178.e24, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34559985

ABSTRACT

Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.


Subject(s)
Host-Pathogen Interactions , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Rift Valley fever virus/physiology , Virus Internalization , Animals , Antibody Specificity/immunology , Base Sequence , Brain/pathology , Brain/virology , CRISPR-Cas Systems/genetics , Cell Membrane/metabolism , Cells, Cultured , Glycoproteins/metabolism , Glycosaminoglycans/metabolism , Glycosylation , Humans , LDL-Receptor Related Protein-Associated Protein/metabolism , Ligands , Low Density Lipoprotein Receptor-Related Protein-1/deficiency , Membrane Glycoproteins/metabolism , Mice , Protein Binding , Protein Denaturation , Rift Valley Fever/pathology , Rift Valley Fever/prevention & control , Rift Valley Fever/virology , Rift Valley fever virus/immunology
2.
PLoS Pathog ; 20(6): e1012343, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935789

ABSTRACT

Rift Valley fever virus (RVFV) is an encephalitic bunyavirus that can infect neurons in the brain. There are no approved therapeutics that can protect from RVFV encephalitis. Innate immunity, the first line of defense against infection, canonically antagonizes viruses through interferon signaling. We found that interferons did not efficiently protect primary cortical neurons from RVFV, unlike other cell types. To identify alternative neuronal antiviral pathways, we screened innate immune ligands and discovered that the TLR2 ligand Pam3CSK4 inhibited RVFV infection, and other bunyaviruses. Mechanistically, we found that Pam3CSK4 blocks viral fusion, independent of TLR2. In a mouse model of RVFV encephalitis, Pam3CSK4 treatment protected animals from infection and mortality. Overall, Pam3CSK4 is a bunyavirus fusion inhibitor active in primary neurons and the brain, representing a new approach toward the development of treatments for encephalitic bunyavirus infections.


Subject(s)
Lipopeptides , Neurons , Rift Valley Fever , Rift Valley fever virus , Animals , Rift Valley fever virus/drug effects , Mice , Lipopeptides/pharmacology , Rift Valley Fever/virology , Rift Valley Fever/prevention & control , Neurons/metabolism , Neurons/virology , Mice, Inbred C57BL , Humans , Immunity, Innate/drug effects , Encephalitis, Viral/virology , Encephalitis, Viral/immunology , Encephalitis, Viral/prevention & control , Encephalitis, Viral/drug therapy , Antiviral Agents/pharmacology
3.
Nature ; 586(7830): 509-515, 2020 10.
Article in English | MEDLINE | ID: mdl-32967005

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Disease Models, Animal , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Animals , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Ferrets/virology , Humans , Mesocricetus/virology , Mice , Pneumonia, Viral/immunology , Primates/virology , SARS-CoV-2 , Viral Vaccines/immunology
4.
J Virol ; 98(8): e0098324, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39016561

ABSTRACT

Rift Valley fever virus (RVFV) infection causes abortions in ruminant livestock and is associated with an increased likelihood of miscarriages in women. Using sheep and human placenta explant cultures, we sought to identify tissues at the maternal-fetal interface targeted by RVFV. Sheep villi and fetal membranes were highly permissive to RVFV infection resulting in markedly higher virus titers than human cultures. Sheep cultures were most permissive to wild-type RVFV and ΔNSm infection, while live-attenuated RVFV vaccines (LAVs; MP-12, ΔNSs, and ΔNSs/ΔNSm) exhibited reduced replication. The human fetal membrane restricted wild-type and LAV replication, and when infection occurred, it was prominent on the maternal-facing side. Type I and type III interferons were induced in human villi exposed to LAVs lacking the NSs protein. This study supports the use of sheep and human placenta explants to understand vertical transmission of RVFV in mammals and whether LAVs are attenuated at the maternal-fetal interface.IMPORTANCEA direct comparison of replication of Rift Valley fever virus (RVFV) in sheep and human placental explants reveals comparative efficiencies and permissivity to infection and replication. Vaccine strains of RVFV demonstrated reduced infection and replication capacity in the mammalian placenta. This study represents the first direct cross-host comparison of the vertical transmission capacity of this high-priority emerging mosquito-transmitted virus.


Subject(s)
Infectious Disease Transmission, Vertical , Placenta , Rift Valley Fever , Rift Valley fever virus , Vaccines, Attenuated , Viral Vaccines , Virus Replication , Rift Valley fever virus/physiology , Rift Valley fever virus/immunology , Animals , Female , Pregnancy , Sheep , Placenta/virology , Humans , Rift Valley Fever/virology , Rift Valley Fever/transmission , Viral Vaccines/immunology , Sheep Diseases/virology
5.
J Virol ; 98(5): e0176223, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563762

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and is responsible for the largest human pandemic in 100 years. Thirty-four vaccines are currently approved for use worldwide, and approximately 67% of the world population has received a complete primary series of one, yet countries are dealing with new waves of infections, variant viruses continue to emerge, and breakthrough infections are frequent secondary to waning immunity. Here, we evaluate a measles virus (MV)-vectored vaccine expressing a stabilized prefusion SARS-CoV-2 spike (S) protein (MV-ATU3-S2PΔF2A; V591) with demonstrated immunogenicity in mouse models (see companion article [J. Brunet, Z. Choucha, M. Gransagne, H. Tabbal, M.-W. Ku et al., J Virol 98:e01693-23, 2024, https://doi.org/10.1128/jvi.01693-23]) in an established African green monkey model of disease. Animals were vaccinated with V591 or the control vaccine (an equivalent MV-vectored vaccine with an irrelevant antigen) intramuscularly using a prime/boost schedule, followed by challenge with an early pandemic isolate of SARS-CoV-2 at 56 days post-vaccination. Pre-challenge, only V591-vaccinated animals developed S-specific antibodies that had virus-neutralizing activity as well as S-specific T cells. Following the challenge, V591-vaccinated animals had lower infectious virus and viral (v) RNA loads in mucosal secretions and stopped shedding virus in these secretions earlier. vRNA loads were lower in these animals in respiratory and gastrointestinal tract tissues at necropsy. This correlated with a lower disease burden in the lungs as quantified by PET/CT at early and late time points post-challenge and by pathological analysis at necropsy.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the largest human pandemic in 100 years. Even though vaccines are currently available, countries are dealing with new waves of infections, variant viruses continue to emerge, breakthrough infections are frequent, and vaccine hesitancy persists. This study uses a safe and effective measles vaccine as a platform for vaccination against SARS-CoV-2. The candidate vaccine was used to vaccinate African green monkeys (AGMs). All vaccinated AGMs developed robust antigen-specific immune responses. After challenge, these AGMs produced less virus in mucosal secretions, for a shorter period, and had a reduced disease burden in the lungs compared to control animals. At necropsy, lower levels of viral RNA were detected in tissue samples from vaccinated animals, and the lungs of these animals lacked the histologic hallmarks of SARS-CoV-2 disease observed exclusively in the control AGMs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Chlorocebus aethiops , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Measles virus/immunology , Measles virus/genetics , COVID-19 Vaccines/immunology , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Genetic Vectors , Vero Cells , Pandemics/prevention & control , Female , Betacoronavirus/immunology , Betacoronavirus/genetics , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Pneumonia, Viral/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Disease Models, Animal
6.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38168672

ABSTRACT

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Subject(s)
Biomedical Research , Containment of Biohazards , Virology , Humans , COVID-19 , United States , Viruses , Biomedical Research/standards
7.
Proc Natl Acad Sci U S A ; 119(33): e2204706119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939689

ABSTRACT

Oropouche orthobunyavirus (OROV; Peribunyaviridae) is a mosquito-transmitted virus that causes widespread human febrile illness in South America, with occasional progression to neurologic effects. Host factors mediating the cellular entry of OROV are undefined. Here, we show that OROV uses the host protein low-density lipoprotein-related protein 1 (Lrp1) for efficient cellular infection. Cells from evolutionarily distinct species lacking Lrp1 were less permissive to OROV infection than cells with Lrp1. Treatment of cells with either the high-affinity Lrp1 ligand receptor-associated protein (RAP) or recombinant ectodomain truncations of Lrp1 significantly reduced OROV infection. In addition, chimeric vesicular stomatitis virus (VSV) expressing OROV glycoproteins (VSV-OROV) bound to the Lrp1 ectodomain in vitro. Furthermore, we demonstrate the biological relevance of the OROV-Lrp1 interaction in a proof-of-concept mouse study in which treatment of mice with RAP at the time of infection reduced tissue viral load and promoted survival from an otherwise lethal infection. These results with OROV, along with the recent finding of Lrp1 as an entry factor for Rift Valley fever virus, highlight the broader significance of Lrp1 in cellular infection by diverse bunyaviruses. Shared strategies for entry, such as the critical function of Lrp1 defined here, provide a foundation for the development of pan-bunyaviral therapeutics.


Subject(s)
Bunyaviridae Infections , Low Density Lipoprotein Receptor-Related Protein-1 , Orthobunyavirus , Virus Internalization , Animals , Bunyaviridae Infections/metabolism , Bunyaviridae Infections/virology , Gene Knockout Techniques , Humans , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Mice , Orthobunyavirus/physiology , South America
8.
J Gen Virol ; 105(3)2024 03.
Article in English | MEDLINE | ID: mdl-38546100

ABSTRACT

Rift Valley fever virus (RVFV) is an emerging arboviral disease with pandemic potential. While infection is often self-limiting, a subset of individuals may develop late-onset encephalitis, accounting for up to 20 % of severe cases. Importantly, individuals displaying neurologic disease have up to a 53 % case fatality rate, yet the neuropathogenesis of RVFV infection remains understudied. In this study, we evaluated whether ex vivo postnatal rat brain slice cultures (BSCs) could be used to evaluate RVFV infection in the central nervous system. BSCs mounted an inflammatory response after slicing, which resolved over time, and they were viable in culture for at least 12 days. Infection of rat BSCs with pathogenic RVFV strain ZH501 induced tissue damage and apoptosis over 48 h. Viral replication in BSCs reached up to 1×107 p.f.u. equivalents/ml, depending on inoculation dose. Confocal immunofluorescent microscopy of cleared slices confirmed direct infection of neurons as well as activation of microglia and astrocytes. Further, RVFV-infected rat BSCs produced antiviral cytokines and chemokines, including MCP-1 and GRO/KC. This study demonstrates that rat BSCs support replication of RVFV for ex vivo studies of neuropathogenesis. This allows for continued and complementary investigation into RVFV infection in an ex vivo postnatal brain slice culture format.


Subject(s)
Rift Valley Fever , Rift Valley fever virus , Rats , Animals , Rift Valley fever virus/physiology , Cytokines , Brain , Cell Death
9.
PLoS Pathog ; 18(6): e1009946, 2022 06.
Article in English | MEDLINE | ID: mdl-35696423

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a positively-stranded RNA arbovirus of the genus Alphavirus that causes encephalitis in humans. Cynomolgus macaques are a relevant model of the human disease caused by VEEV and are useful in exploring pathogenic mechanisms and the host response to VEEV infection. Macaques were exposed to small-particle aerosols containing virus derived from an infectious clone of VEEV strain INH-9813, a subtype IC strain isolated from a human infection. VEEV-exposed macaques developed a biphasic fever after infection similar to that seen in humans. Maximum temperature deviation correlated with the inhaled dose, but fever duration did not. Neurological signs, suggestive of virus penetration into the central nervous system (CNS), were predominantly seen in the second febrile period. Electroencephalography data indicated a statistically significant decrease in all power bands and circadian index during the second febrile period that returned to normal after fever resolved. Intracranial pressure increased late in the second febrile period. On day 6 post-infection macaques had high levels of MCP-1 and IP-10 chemokines in the CNS, as well as a marked increase of T lymphocytes and activated microglia. More than four weeks after infection, VEEV genomic RNA was found in the brain, cerebrospinal fluid and cervical lymph nodes. Pro-inflammatory cytokines & chemokines, infiltrating leukocytes and pathological changes were seen in the CNS tissues of macaques euthanized at these times. These data are consistent with persistence of virus replication and/or genomic RNA and potentially, inflammatory sequelae in the central nervous system after resolution of acute VEEV disease.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Encephalomyelitis, Venezuelan Equine , Animals , Central Nervous System , Encephalitis Virus, Venezuelan Equine/genetics , Horses/genetics , Inflammation , Macaca fascicularis , RNA, Viral/genetics
10.
J Infect Dis ; 228(Suppl 6): S376-S389, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37849397

ABSTRACT

Research directed at select prototype pathogens is part of the approach put forth by the National Institute of Allergy and Infectious Disease (NIAID) to prepare for future pandemics caused by emerging viruses. We were tasked with identifying suitable prototypes for four virus families of the Bunyavirales order (Phenuiviridae, Peribunyaviridae, Nairoviridae, and Hantaviridae). This is a challenge due to the breadth and diversity of these viral groups. While there are many differences among the Bunyavirales, they generally have complex ecological life cycles, segmented genomes, and cause a range of human clinical outcomes from mild to severe and even death. Here, we delineate potential prototype species that encompass the breadth of clinical outcomes of a given family, have existing reverse genetics tools or animal disease models, and can be amenable to a platform approach to vaccine testing. Suggested prototype pathogens outlined here can serve as a starting point for further discussions.


Subject(s)
RNA Viruses , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL