Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell ; 183(6): 1617-1633.e22, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33259802

ABSTRACT

Histone H3.3 glycine 34 to arginine/valine (G34R/V) mutations drive deadly gliomas and show exquisite regional and temporal specificity, suggesting a developmental context permissive to their effects. Here we show that 50% of G34R/V tumors (n = 95) bear activating PDGFRA mutations that display strong selection pressure at recurrence. Although considered gliomas, G34R/V tumors actually arise in GSX2/DLX-expressing interneuron progenitors, where G34R/V mutations impair neuronal differentiation. The lineage of origin may facilitate PDGFRA co-option through a chromatin loop connecting PDGFRA to GSX2 regulatory elements, promoting PDGFRA overexpression and mutation. At the single-cell level, G34R/V tumors harbor dual neuronal/astroglial identity and lack oligodendroglial programs, actively repressed by GSX2/DLX-mediated cell fate specification. G34R/V may become dispensable for tumor maintenance, whereas mutant-PDGFRA is potently oncogenic. Collectively, our results open novel research avenues in deadly tumors. G34R/V gliomas are neuronal malignancies where interneuron progenitors are stalled in differentiation by G34R/V mutations and malignant gliogenesis is promoted by co-option of a potentially targetable pathway, PDGFRA signaling.


Subject(s)
Brain Neoplasms/genetics , Carcinogenesis/genetics , Glioma/genetics , Histones/genetics , Interneurons/metabolism , Mutation/genetics , Neural Stem Cells/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Animals , Astrocytes/metabolism , Astrocytes/pathology , Brain Neoplasms/pathology , Carcinogenesis/pathology , Cell Lineage , Cellular Reprogramming/genetics , Chromatin/metabolism , Embryo, Mammalian/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Silencing , Glioma/pathology , Histones/metabolism , Lysine/metabolism , Mice, Inbred C57BL , Models, Biological , Neoplasm Grading , Oligodendroglia/metabolism , Promoter Regions, Genetic/genetics , Prosencephalon/embryology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Transcription, Genetic , Transcriptome/genetics
2.
Mol Cell ; 81(23): 4876-4890.e7, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34739871

ABSTRACT

Histone H3.3 lysine-to-methionine substitutions K27M and K36M impair the deposition of opposing chromatin marks, H3K27me3/me2 and H3K36me3/me2. We show that these mutations induce hypotrophic and disorganized eyes in Drosophila eye primordia. Restriction of H3K27me3 spread in H3.3K27M and its redistribution in H3.3K36M result in transcriptional deregulation of PRC2-targeted eye development and of piRNA biogenesis genes, including krimp. Notably, both mutants promote redistribution of H3K36me2 away from repetitive regions into active genes, which associate with retrotransposon de-repression in eye discs. Aberrant expression of krimp represses LINE retrotransposons but does not contribute to the eye phenotype. Depletion of H3K36me2 methyltransferase ash1 in H3.3K27M, and of PRC2 component E(z) in H3.3K36M, restores the expression of eye developmental genes and normal eye growth, showing that redistribution of antagonistic marks contributes to K-to-M pathogenesis. Our results implicate a novel function for H3K36me2 and showcase convergent downstream effects of oncohistones that target opposing epigenetic marks.


Subject(s)
Chromatin/chemistry , DNA Transposable Elements , Histones/chemistry , Histones/genetics , Imaginal Discs/metabolism , Mutation , Animals , Animals, Genetically Modified , Centromere/ultrastructure , Chromatin Immunoprecipitation , Computational Biology/methods , DNA Methylation , Drosophila melanogaster , Epigenesis, Genetic , Humans , Lysine/chemistry , Methionine/chemistry , Mice , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Phenotype , RNA-Seq
3.
Mol Cell ; 80(4): 726-735.e7, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33049227

ABSTRACT

Diffuse midline gliomas and posterior fossa type A ependymomas contain the recurrent histone H3 lysine 27 (H3 K27M) mutation and express the H3 K27M-mimic EZHIP (CXorf67), respectively. H3 K27M and EZHIP are competitive inhibitors of Polycomb Repressive Complex 2 (PRC2) lysine methyltransferase activity. In vivo, these proteins reduce overall H3 lysine 27 trimethylation (H3K27me3) levels; however, residual peaks of H3K27me3 remain at CpG islands (CGIs) through an unknown mechanism. Here, we report that EZHIP and H3 K27M preferentially interact with PRC2 that is allosterically activated by H3K27me3 at CGIs and impede its spreading. Moreover, H3 K27M oncohistones reduce H3K27me3 in trans, independent of their incorporation into the chromatin. Although EZHIP is not found outside placental mammals, expression of human EZHIP reduces H3K27me3 in Drosophila melanogaster through a conserved mechanism. Our results provide mechanistic insights for the retention of residual H3K27me3 in tumors driven by H3 K27M and EZHIP.


Subject(s)
Chromatin/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Histones/genetics , Mutation , Oncogene Proteins/metabolism , Polycomb Repressive Complex 2/metabolism , Allosteric Regulation , Animals , CpG Islands , Drosophila melanogaster , Humans , Mice , Oncogene Proteins/genetics , Polycomb Repressive Complex 2/genetics
4.
Nature ; 573(7773): 281-286, 2019 09.
Article in English | MEDLINE | ID: mdl-31485078

ABSTRACT

Enzymes that catalyse CpG methylation in DNA, including the DNA methyltransferases 1 (DNMT1), 3A (DNMT3A) and 3B (DNMT3B), are indispensable for mammalian tissue development and homeostasis1-4. They are also implicated in human developmental disorders and cancers5-8, supporting the critical role of DNA methylation in the specification and maintenance of cell fate. Previous studies have suggested that post-translational modifications of histones are involved in specifying patterns of DNA methyltransferase localization and DNA methylation at promoters and actively transcribed gene bodies9-11. However, the mechanisms that control the establishment and maintenance of intergenic DNA methylation remain poorly understood. Tatton-Brown-Rahman syndrome (TBRS) is a childhood overgrowth disorder that is defined by germline mutations in DNMT3A. TBRS shares clinical features with Sotos syndrome (which is caused by haploinsufficiency of NSD1, a histone methyltransferase that catalyses the dimethylation of histone H3 at K36 (H3K36me2)8,12,13), which suggests that there is a mechanistic link between these two diseases. Here we report that NSD1-mediated H3K36me2 is required for the recruitment of DNMT3A and maintenance of DNA methylation at intergenic regions. Genome-wide analysis shows that the binding and activity of DNMT3A colocalize with H3K36me2 at non-coding regions of euchromatin. Genetic ablation of Nsd1 and its paralogue Nsd2 in mouse cells results in a redistribution of DNMT3A to H3K36me3-modified gene bodies and a reduction in the methylation of intergenic DNA. Blood samples from patients with Sotos syndrome and NSD1-mutant tumours also exhibit hypomethylation of intergenic DNA. The PWWP domain of DNMT3A shows dual recognition of H3K36me2 and H3K36me3 in vitro, with a higher binding affinity towards H3K36me2 that is abrogated by TBRS-derived missense mutations. Together, our study reveals a trans-chromatin regulatory pathway that connects aberrant intergenic CpG methylation to human neoplastic and developmental overgrowth.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA, Intergenic/metabolism , Histones/metabolism , Animals , Cell Line , DNA Methyltransferase 3A , Genome-Wide Association Study , Growth Disorders/genetics , Growth Disorders/physiopathology , Humans , Mice , Protein Binding , Protein Domains , Protein Transport , Sotos Syndrome/genetics , Sotos Syndrome/physiopathology
5.
N Engl J Med ; 369(25): 2379-90, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24325356

ABSTRACT

BACKGROUND: Approximately 50 to 60% of patients with essential thrombocythemia or primary myelofibrosis carry a mutation in the Janus kinase 2 gene (JAK2), and an additional 5 to 10% have activating mutations in the thrombopoietin receptor gene (MPL). So far, no specific molecular marker has been identified in the remaining 30 to 45% of patients. METHODS: We performed whole-exome sequencing to identify somatically acquired mutations in six patients who had primary myelofibrosis without mutations in JAK2 or MPL. Resequencing of CALR, encoding calreticulin, was then performed in cohorts of patients with myeloid neoplasms. RESULTS: Somatic insertions or deletions in exon 9 of CALR were detected in all patients who underwent whole-exome sequencing. Resequencing in 1107 samples from patients with myeloproliferative neoplasms showed that CALR mutations were absent in polycythemia vera. In essential thrombocythemia and primary myelofibrosis, CALR mutations and JAK2 and MPL mutations were mutually exclusive. Among patients with essential thrombocythemia or primary myelofibrosis with nonmutated JAK2 or MPL, CALR mutations were detected in 67% of those with essential thrombocythemia and 88% of those with primary myelofibrosis. A total of 36 types of insertions or deletions were identified that all cause a frameshift to the same alternative reading frame and generate a novel C-terminal peptide in the mutant calreticulin. Overexpression of the most frequent CALR deletion caused cytokine-independent growth in vitro owing to the activation of signal transducer and activator of transcription 5 (STAT5) by means of an unknown mechanism. Patients with mutated CALR had a lower risk of thrombosis and longer overall survival than patients with mutated JAK2. CONCLUSIONS: Most patients with essential thrombocythemia or primary myelofibrosis that was not associated with a JAK2 or MPL alteration carried a somatic mutation in CALR. The clinical course in these patients was more indolent than that in patients with the JAK2 V617F mutation. (Funded by the MPN Research Foundation and Associazione Italiana per la Ricerca sul Cancro.).


Subject(s)
Calreticulin/genetics , Mutation , Primary Myelofibrosis/genetics , Thrombocythemia, Essential/genetics , Bone Marrow Diseases/genetics , Exons , Humans , Janus Kinase 2/genetics , Leukemia, Myeloid/genetics , Polymerase Chain Reaction , Primary Myelofibrosis/mortality , Proportional Hazards Models , Receptors, Thrombopoietin/genetics , Sequence Analysis, DNA , Thrombocythemia, Essential/complications , Thrombocythemia, Essential/mortality , Thrombosis/etiology
6.
Blood ; 123(15): 2416-9, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24553179

ABSTRACT

Somatic mutations in the calreticulin (CALR) gene were recently discovered in patients with sporadic essential thrombocythemia (ET) and primary myelofibrosis (PMF) lacking JAK2 and MPL mutations. We studied CALR mutation status in familial cases of myeloproliferative neoplasm. In a cohort of 127 patients, CALR indels were identified in 6 of 55 (11%) subjects with ET and in 6 of 20 (30%) with PMF, whereas 52 cases of polycythemia vera had nonmutated CALR. All CALR mutations were somatic, found in granulocytes but not in T lymphocytes. Patients with CALR-mutated ET showed a higher platelet count (P = .017) and a lower cumulative incidence of thrombosis (P = .036) and of disease progression (P = .047) compared with those with JAK2 (V617F). In conclusion, a significant proportion of familial ET and PMF nonmutated for JAK2 carry a somatic mutation of CALR.


Subject(s)
Calreticulin/genetics , Mutation , Primary Myelofibrosis/genetics , Thrombocythemia, Essential/genetics , DNA Mutational Analysis , Exons/genetics , Genetic Predisposition to Disease , Genotype , Humans , Janus Kinase 2/genetics , Kaplan-Meier Estimate , Pedigree , Phenotype , Primary Myelofibrosis/mortality , Thrombocythemia, Essential/mortality
7.
Blood ; 123(9): 1372-83, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24398328

ABSTRACT

The main molecular basis of essential thrombocythemia and hereditary thrombocytosis is acquired, and germ-line-activating mutations affect the thrombopoietin signaling axis. We have identified 2 families with hereditary thrombocytosis presenting novel heterozygous germ-line mutations of JAK2. One family carries the JAK2 R867Q mutation located in the kinase domain, whereas the other presents 2 JAK2 mutations, S755R/R938Q, located in cis in both the pseudokinase and kinase domains. Expression of Janus kinase 2 (JAK2) R867Q and S755R/R938Q induced spontaneous growth of Ba/F3-thrombopoietin receptor (MPL) but not of Ba/F3-human receptor of erythropoietin cells. Interestingly, both Ba/F3-MPL cells expressing the mutants and platelets from patients displayed thrombopoietin-independent phosphorylation of signal transducer and activator of transcription 1. The JAK2 R867Q and S755R/R938Q proteins had significantly longer half-lives compared with JAK2 V617F. The longer half-lives correlated with increased binding to the heat shock protein 90 (HSP90) chaperone and with higher MPL cell-surface expression. Moreover, these mutants were less sensitive to JAK2 and HSP90 inhibitors than JAK2 V617F. Our results suggest that the mutations in the kinase domain of JAK2 may confer a weak activation of signaling specifically dependent on MPL while inducing a decreased sensitivity to clinically available JAK2 inhibitors.


Subject(s)
Drug Resistance/genetics , Germ-Line Mutation , Janus Kinase 2/genetics , Protein Kinase Inhibitors/therapeutic use , Thrombocytosis/drug therapy , Thrombocytosis/genetics , Adolescent , Adult , Aged , Animals , Cells, Cultured , Female , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/chemistry , Male , Mice , Middle Aged , Pedigree , Protein Structure, Tertiary/genetics , Young Adult
8.
Blood ; 123(10): 1544-51, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24366362

ABSTRACT

Patients with essential thrombocythemia may carry JAK2 (V617F), an MPL substitution, or a calreticulin gene (CALR) mutation. We studied biologic and clinical features of essential thrombocythemia according to JAK2 or CALR mutation status and in relation to those of polycythemia vera. The mutant allele burden was lower in JAK2-mutated than in CALR-mutated essential thrombocythemia. Patients with JAK2 (V617F) were older, had a higher hemoglobin level and white blood cell count, and lower platelet count and serum erythropoietin than those with CALR mutation. Hematologic parameters of patients with JAK2-mutated essential thrombocythemia or polycythemia vera were related to the mutant allele burden. While no polycythemic transformation was observed in CALR-mutated patients, the cumulative risk was 29% at 15 years in those with JAK2-mutated essential thrombocythemia. There was no significant difference in myelofibrotic transformation between the 2 subtypes of essential thrombocythemia. Patients with JAK2-mutated essential thrombocythemia and those with polycythemia vera had a similar risk of thrombosis, which was twice that of patients with the CALR mutation. These observations are consistent with the notion that JAK2-mutated essential thrombocythemia and polycythemia vera represent different phenotypes of a single myeloproliferative neoplasm, whereas CALR-mutated essential thrombocythemia is a distinct disease entity.


Subject(s)
Calreticulin/genetics , Janus Kinase 2/genetics , Mutation , Thrombocythemia, Essential/diagnosis , Thrombocythemia, Essential/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Cell Transformation, Neoplastic/genetics , Codon , Exons , Female , Granulocytes , Humans , Male , Middle Aged , Myeloproliferative Disorders/genetics , Polycythemia Vera/genetics , Primary Myelofibrosis/genetics , Prognosis , Receptors, Thrombopoietin/genetics , Thrombocythemia, Essential/mortality , Thrombosis/genetics , Young Adult
9.
Am J Hematol ; 89(12): 1107-10, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25196853

ABSTRACT

The C allele of the rs2736100 single nucleotide polymorphism located in the second intron of the TERT gene has recently been identified as a susceptibility factor for myeloproliferative neoplasms (MPN) in the Icelandic population. Here, we evaluate the role of TERT rs2736100_C in sporadic and familial MPN in the context of the previously identified JAK2 GGCC predisposition haplotype. We have confirmed the TERT rs2736100_C association in a large cohort of Italian sporadic MPN patients. The risk conferred by TERT rs2736100_C is present in all molecular and diagnostic MPN subtypes. TERT rs2736100_C and JAK2 GGCC are independently predisposing to MPN and have an additive effect on disease risk, together explaining a large fraction of the population attributable fraction (PAF = 73.06%). We found TERT rs2736100_C significantly enriched (P = 0.0090) in familial MPN compared to sporadic MPN, suggesting that low-penetrance variants may be responsible for a substantial part of familial clustering in MPN.


Subject(s)
Genetic Predisposition to Disease , Germ-Line Mutation , Hematologic Neoplasms/genetics , Janus Kinase 2/genetics , Myeloproliferative Disorders/genetics , Telomerase/genetics , Adult , Cohort Studies , Genetic Loci , Haplotypes , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/pathology , Humans , Italy , Male , Middle Aged , Multigene Family , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/pathology , Pedigree , Penetrance , Risk
12.
bioRxiv ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38116029

ABSTRACT

Polycomb Repressive Complex 2 (PRC2)-mediated histone H3K27 tri-methylation (H3K27me3) recruits canonical PRC1 (cPRC1) to maintain heterochromatin. In early development, polycomb-regulated genes are connected through long-range 3D interactions which resolve upon differentiation. Here, we report that polycomb looping is controlled by H3K27me3 spreading and regulates target gene silencing and cell fate specification. Using glioma-derived H3 Lys-27-Met (H3K27M) mutations as tools to restrict H3K27me3 deposition, we show that H3K27me3 confinement concentrates the chromatin pool of cPRC1, resulting in heightened 3D interactions mirroring chromatin architecture of pluripotency, and stringent gene repression that maintains cells in progenitor states to facilitate tumor development. Conversely, H3K27me3 spread in pluripotent stem cells, following neural differentiation or loss of the H3K36 methyltransferase NSD1, dilutes cPRC1 concentration and dissolves polycomb loops. These results identify the regulatory principles and disease implications of polycomb looping and nominate histone modification-guided distribution of reader complexes as an important mechanism for nuclear compartment organization. Highlights: The confinement of H3K27me3 at PRC2 nucleation sites without its spreading correlates with increased 3D chromatin interactions.The H3K27M oncohistone concentrates canonical PRC1 that anchors chromatin loop interactions in gliomas, silencing developmental programs.Stem and progenitor cells require factors promoting H3K27me3 confinement, including H3K36me2, to maintain cPRC1 loop architecture.The cPRC1-H3K27me3 interaction is a targetable driver of aberrant self-renewal in tumor cells.

13.
Am J Hematol ; 87(3): 245-50, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22190018

ABSTRACT

Chronic myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) have an inherent tendency to progress to acute myeloid leukemia (AML). Using high-resolution SNP microarrays, we studied a total of 517 MPN and MDS patients in different disease stages, including 77 AML cases with previous history of MPN (N = 46) or MDS (N = 31). Frequent chromosomal deletions of variable sizes were detected, allowing the mapping of putative tumor suppressor genes involved in the leukemic transformation process. We detected frequent deletions on the short arm of chromosome 6 (del6p). The common deleted region on 6p mapped to a 1.1-Mb region and contained only the JARID2 gene--member of the polycomb repressive complex 2 (PRC2). When we compared the frequency of del6p between chronic and leukemic phase, we observed a strong association of del6p with leukemic transformation (P = 0.0033). Subsequently, analysis of deletion profiles of other PRC2 members revealed frequent losses of genes such as EZH2, AEBP2, and SUZ12; however, the deletions targeting these genes were large. We also identified two patients with homozygous losses of JARID2 and AEBP2. We observed frequent codeletion of AEBP2 and ETV6, and similarly, SUZ12 and NF1. Using next generation exome sequencing of 40 patients, we identified only one somatic mutation in the PRC2 complex member SUZ12. As the frequency of point mutations in PRC2 members was found to be low, deletions were the main type of lesions targeting PRC2 complex members. Our study suggests an essential role of the PRC2 complex in the leukemic transformation of chronic myeloid disorders.


Subject(s)
Cell Transformation, Neoplastic/genetics , Chromosome Deletion , Chromosomes, Human, Pair 6/ultrastructure , Genes, Tumor Suppressor , Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/genetics , Neoplasm Proteins/physiology , Nerve Tissue Proteins/physiology , Tumor Suppressor Proteins/physiology , Acute Disease , Aged , Carrier Proteins/genetics , Chromosome Aberrations , Chromosome Mapping , Chromosomes, Human, Pair 6/genetics , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Disease Progression , Enhancer of Zeste Homolog 2 Protein , Female , Genotype , Humans , Leukemia, Myeloid/genetics , Male , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Oligonucleotide Array Sequence Analysis , Polycomb Repressive Complex 2 , Polycomb-Group Proteins , Repressor Proteins/deficiency , Repressor Proteins/genetics , Repressor Proteins/physiology , Sequence Analysis, DNA , Transcription Factors/deficiency , Transcription Factors/genetics , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics
14.
Am J Hematol ; 87(11): 1010-6, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22887079

ABSTRACT

The study aimed to identify genetic lesions associated with secondary acute myeloid leukemia (sAML) in comparison with AML arising de novo (dnAML) and assess their impact on patients' overall survival (OS). High-resolution genotyping and loss of heterozygosity mapping was performed on DNA samples from 86 sAML and 117 dnAML patients, using Affymetrix Genome-Wide Human SNP 6.0 arrays. Genes TP53, RUNX1, CBL, IDH1/2, NRAS, NPM1, and FLT3 were analyzed for mutations in all patients. We identified 36 recurrent cytogenetic aberrations (more than five events). Mutations in TP53, 9pUPD, and del7q (targeting CUX1 locus) were significantly associated with sAML, while NPM1 and FLT3 mutations associated with dnAML. Patients with sAML carrying TP53 mutations demonstrated lower 1-year OS rate than those with wild-type TP53 (14.3% ± 9.4% vs. 35.4% ± 7.2%; P = 0.002), while complex karyotype, del7q (CUX1) and del7p (IKZF1) showed no significant effect on OS. Multivariate analysis confirmed that mutant TP53 was the only independent adverse prognostic factor for OS in sAML (hazard ratio 2.67; 95% CI: 1.33-5.37; P = 0.006). Patients with dnAML and complex karyotype carried sAML-associated defects (TP53 defects in 54.5%, deletions targeting FOXP1 and ETV6 loci in 45.4% of the cases). We identified several co-occurring lesions associated with either sAML or dnAML diagnosis. Our data suggest that distinct genetic lesions drive leukemogenesis in sAML. High karyotype complexity of sAML patients does not influence OS. Somatic mutations in TP53 are the only independent adverse prognostic factor in sAML. Patients with dnAML and complex karyotype show genetic features associated with sAML and myeloproliferative neoplasms.


Subject(s)
Chromosome Aberrations , Leukemia, Myeloid, Acute/genetics , Neoplasms, Second Primary/genetics , Chromosome Aberrations/statistics & numerical data , DNA/genetics , Gene Expression Profiling , Genome-Wide Association Study , Humans , Kaplan-Meier Estimate , Karyotyping , Leukemia, Myeloid, Acute/mortality , Loss of Heterozygosity , Multivariate Analysis , Neoplasms, Second Primary/mortality , Nucleophosmin , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Prognosis
15.
Nat Genet ; 54(12): 1865-1880, 2022 12.
Article in English | MEDLINE | ID: mdl-36471070

ABSTRACT

Canonical (H3.1/H3.2) and noncanonical (H3.3) histone 3 K27M-mutant gliomas have unique spatiotemporal distributions, partner alterations and molecular profiles. The contribution of the cell of origin to these differences has been challenging to uncouple from the oncogenic reprogramming induced by the mutation. Here, we perform an integrated analysis of 116 tumors, including single-cell transcriptome and chromatin accessibility, 3D chromatin architecture and epigenomic profiles, and show that K27M-mutant gliomas faithfully maintain chromatin configuration at developmental genes consistent with anatomically distinct oligodendrocyte precursor cells (OPCs). H3.3K27M thalamic gliomas map to prosomere 2-derived lineages. In turn, H3.1K27M ACVR1-mutant pontine gliomas uniformly mirror early ventral NKX6-1+/SHH-dependent brainstem OPCs, whereas H3.3K27M gliomas frequently resemble dorsal PAX3+/BMP-dependent progenitors. Our data suggest a context-specific vulnerability in H3.1K27M-mutant SHH-dependent ventral OPCs, which rely on acquisition of ACVR1 mutations to drive aberrant BMP signaling required for oncogenesis. The unifying action of K27M mutations is to restrict H3K27me3 at PRC2 landing sites, whereas other epigenetic changes are mainly contingent on the cell of origin chromatin state and cycling rate.


Subject(s)
Chromatin , Epigenomics , Cell Lineage/genetics , Brain
16.
Nat Cancer ; 3(8): 994-1011, 2022 08.
Article in English | MEDLINE | ID: mdl-35788723

ABSTRACT

We analyzed the contributions of structural variants (SVs) to gliomagenesis across 179 pediatric high-grade gliomas (pHGGs). The most recurrent SVs targeted MYC isoforms and receptor tyrosine kinases (RTKs), including an SV amplifying a MYC enhancer in 12% of diffuse midline gliomas (DMG), indicating an underappreciated role for MYC in pHGG. SV signature analysis revealed that tumors with simple signatures were TP53 wild type (TP53WT) but showed alterations in TP53 pathway members PPM1D and MDM4. Complex signatures were associated with direct aberrations in TP53, CDKN2A and RB1 early in tumor evolution and with later-occurring extrachromosomal amplicons. All pHGGs exhibited at least one simple-SV signature, but complex-SV signatures were primarily restricted to subsets of H3.3K27M DMGs and hemispheric pHGGs. Importantly, DMGs with complex-SV signatures were associated with shorter overall survival independent of histone mutation and TP53 status. These data provide insight into the impact of SVs on gliomagenesis and the mechanisms that shape them.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/genetics , Cell Cycle Proteins/genetics , Child , Glioma/genetics , Histones/genetics , Humans , Mutation , Proto-Oncogene Proteins/genetics
17.
Trends Cell Biol ; 31(10): 814-828, 2021 10.
Article in English | MEDLINE | ID: mdl-34092471

ABSTRACT

Deregulation of the epigenome underlies oncogenesis in numerous primary brain tumours in children and young adults. In this review, we describe how recurrent mutations in isocitrate dehydrogenases or histone 3 variants (oncohistones) in gliomas, expression of the oncohistone mimic enhancer of Zeste homologs inhibiting protein (EZHIP) in a subgroup of ependymoma, and epigenetic alterations in other embryonal tumours promote oncogenicity. We review the proposed mechanisms of cellular transformation, current tumorigenesis models and their link to development. We further stress the narrow developmental windows permissive to their oncogenic potential and how this may stem from converging effects deregulating polycomb repressive complex (PRC)2 function and targets. As altered chromatin states may be reversible, improved understanding of aberrant cancer epigenomes could orient the design of effective therapies.


Subject(s)
Brain Neoplasms , Ependymoma , Glioma , Brain Neoplasms/genetics , Child , Ependymoma/genetics , Glioma/genetics , Humans , Oncogenes , Polycomb Repressive Complex 1 , Polycomb Repressive Complex 2/genetics
18.
Cell Rep ; 33(7): 108390, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33207202

ABSTRACT

The discovery of H3K27M mutations in pediatric gliomas marked a new chapter in cancer epigenomics. Numerous studies have investigated the effect of this mutation on H3K27 trimethylation, but only recently have we started to realize its additional effects on the epigenome. Here, we use isogenic glioma H3K27M+/- cell lines to investigate H3K27 methylation and its interaction with H3K36 and H3K9 modifications. We describe a "step down" effect of H3K27M on the distribution of H3K27 methylation: me3 is reduced to me2, me2 is reduced to me1, whereas H3K36me2/3 delineates the boundaries for the spread of H3K27me marks. We also observe a replacement of H3K27me2/3 silencing by H3K9me3. Using a computational simulation, we explain our observations by reduced effectiveness of PRC2 and constraints imposed on the deposition of H3K27me by antagonistic H3K36 modifications. Our work further elucidates the effects of H3K27M in gliomas as well as the general principles of deposition in H3K27 methylation.


Subject(s)
Glioma/genetics , Histones/genetics , Histones/metabolism , Cell Line, Tumor , Chromatin/genetics , DNA Methylation/genetics , Epigenomics , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Glioma/metabolism , Humans , Lysine/metabolism , Methionine/metabolism , Methylation , Mutation/genetics , Polycomb Repressive Complex 2/metabolism , Protein Processing, Post-Translational
19.
Cancer Discov ; 10(12): 1968-1987, 2020 12.
Article in English | MEDLINE | ID: mdl-32967858

ABSTRACT

Glycine 34-to-tryptophan (G34W) substitutions in H3.3 arise in approximately 90% of giant cell tumor of bone (GCT). Here, we show H3.3 G34W is necessary for tumor formation. By profiling the epigenome, transcriptome, and secreted proteome of patient samples and tumor-derived cells CRISPR-Cas9-edited for H3.3 G34W, we show that H3.3K36me3 loss on mutant H3.3 alters the deposition of the repressive H3K27me3 mark from intergenic to genic regions, beyond areas of H3.3 deposition. This promotes redistribution of other chromatin marks and aberrant transcription, altering cell fate in mesenchymal progenitors and hindering differentiation. Single-cell transcriptomics reveals that H3.3 G34W stromal cells recapitulate a neoplastic trajectory from a SPP1+ osteoblast-like progenitor population toward an ACTA2+ myofibroblast-like population, which secretes extracellular matrix ligands predicted to recruit and activate osteoclasts. Our findings suggest that H3.3 G34W leads to GCT by sustaining a transformed state in osteoblast-like progenitors, which promotes neoplastic growth, pathologic recruitment of giant osteoclasts, and bone destruction. SIGNIFICANCE: This study shows that H3.3 G34W drives GCT tumorigenesis through aberrant epigenetic remodeling, altering differentiation trajectories in mesenchymal progenitors. H3.3 G34W promotes in neoplastic stromal cells an osteoblast-like progenitor state that enables undue interactions with the tumor microenvironment, driving GCT pathogenesis. These epigenetic changes may be amenable to therapeutic targeting in GCT.See related commentary by Licht, p. 1794.This article is highlighted in the In This Issue feature, p. 1775.


Subject(s)
Bone Neoplasms/genetics , Giant Cell Tumor of Bone/genetics , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Cell Differentiation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL