Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Bioorg Med Chem ; 27(17): 3954-3959, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31324567

ABSTRACT

Three new cyclic heptapeptides (1-3) together with three known compounds (4-6) were isolated from a solid rice culture of the soil-derived fungus Clonostachys rosea. Fermentation of the fungus on white beans instead of rice afforded a new γ-lactam (7) and a known γ-lactone (8) that were not detected in the former extracts. The structures of the new compounds were elucidated on the basis of 1D and 2D NMR spectra as well as by HRESIMS data. Compounds 1 and 4 exhibited significant cytotoxicity against the L5178Y mouse lymphoma cell line with IC50 values of 4.1 and 0.1 µM, respectively. Compound 4 also displayed cytotoxicity against the A2780 human ovarian cancer cell line with an IC50 value of 3.5 µM. The preliminary structure-activity relationships are discussed.


Subject(s)
Antineoplastic Agents/pharmacology , Gliocladium/chemistry , Peptides, Cyclic/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Fermentation , Gliocladium/metabolism , Humans , Mice , Molecular Structure , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Structure-Activity Relationship
2.
Microbiol Resour Announc ; 12(4): e0126822, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36943053

ABSTRACT

Sinomicrobium sp. strain PAP.21 (EXT111902) was isolated from the coast of Cenderawasih Bay National Park in West Papua, Indonesia. Its genome was assembled into 151 contigs with a total size of 5.439 Mbp, enabling the prediction of its specialized metabolite production capacity.

3.
Microbiol Resour Announc ; 12(4): e0126422, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36927116

ABSTRACT

Algoriphagus sp. strain PAP.12 (EXT111900) and Roseivirga sp. strain PAP.19 (EXT111901) were isolated from marine samples. Here, we report their draft genome sequences, 5.032 Mbp and 4.583 Mbp in size, respectively, and rate their specialized metabolite production capacity. Taxonomic ranks established by genome-based analysis indicate that Algoriphagus sp. strain PAP.12 represents a candidate new species.

4.
Nat Prod Res ; 35(2): 257-265, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31210064

ABSTRACT

A new epidithiodiketopiperazine (ETP), pretrichodermamide G (1), along with three known (epi)dithiodiketopiparazines (2-4) were isolated from cultures of Trichoderma harzianum and Epicoccum nigrum, endophytic fungi associated with medicinal plants Zingiber officinale and Salix sp., respectively. The structure of the new compound (1) was established on the basis of spectroscopic data, including 1D/2D NMR and HRESIMS. The isolated compounds were investigated for their antifungal, antibacterial and cytotoxic potential against a panel of microorganisms and cell lines. Pretrichodermamide A (2) displayed antimicrobial activity towards the plant pathogenic fungus Ustilago maydis and the human pathogenic bacterium Mycobacterium tuberculosis with MIC values of 1 mg/mL (2 mM) and 25 µg/mL (50 µM), respectively. Meanwhile, epicorazine A (3) exhibited strong to moderate cytotoxicity against L5178Y, Ramos, and Jurkat J16 cell lines with IC50 values ranging from 1.3 to 28 µM. Further mechanistic studies indicated that 3 induces apoptotic cell death.


Subject(s)
Ascomycota/chemistry , Diketopiperazines/chemistry , Diketopiperazines/pharmacology , Hypocreales/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Basidiomycota/drug effects , Endophytes/chemistry , Humans , Jurkat Cells , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/drug effects , Plants, Medicinal/microbiology , Spectrometry, Mass, Electrospray Ionization
5.
Fitoterapia ; 146: 104698, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32745508

ABSTRACT

Three new flavipin-derived alkaloids, azacoccones F-H (1-3), along with six known compounds (4-9) were isolated from the endophytic fungus Epicoccum nigrum MK214079 associated with leaves of Salix sp. The structures of the new compounds were established by analysis of their 1D/2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectroscopy (HRESIMS) data. The absolute configuration of azacoccones F-H (1-3) was determined by comparison of experimental electronic circular dichroism (ECD) data with reported ones and biogenetic considerations. Epicocconigrone A (4), epipyrone A (5), and epicoccolide B (6) exhibited moderate antibacterial activity against Staphylococcus aureus ATCC 29213 with minimal inhibitory concentration (MIC) values ranging from 25 to 50 µM. Furthermore, epipyrone A (5) and epicoccamide A (7) displayed mild antifungal activity against Ustilago maydis AB33 with MIC values of 1.6 and 1.8 mM, respectively. Epicorazine A (8) showed pronounced cytotoxicity against the L5178Y mouse lymphoma cell line with an IC50 value of 1.3 µM.


Subject(s)
Alkaloids/pharmacology , Ascomycota/chemistry , Biological Products/pharmacology , o-Phthalaldehyde/analogs & derivatives , Alkaloids/isolation & purification , Animals , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Basidiomycota , Biological Products/isolation & purification , Cell Line, Tumor , Endophytes/chemistry , Mice , Microbial Sensitivity Tests , Molecular Structure , Plant Leaves/microbiology , Russia , Salix/microbiology , Staphylococcus aureus/drug effects , o-Phthalaldehyde/isolation & purification , o-Phthalaldehyde/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL