ABSTRACT
BACKGROUND: Atopic dermatitis (AD) is characterized by TH2-dominated skin inflammation and systemic response to cutaneously encountered antigens. The TH2 cytokines IL-4 and IL-13 play a critical role in the pathogenesis of AD. The Q576->R576 polymorphism in the IL-4 receptor alpha (IL-4Rα) chain common to IL-4 and IL-13 receptors alters IL-4 signaling and is associated with asthma severity. OBJECTIVE: We sought to investigate whether the IL-4Rα R576 polymorphism is associated with AD severity and exaggerates allergic skin inflammation in mice. METHODS: Nighttime itching interfering with sleep, Rajka-Langeland, and Eczema Area and Severity Index scores were used to assess AD severity. Allergic skin inflammation following epicutaneous sensitization of mice 1 or 2 IL-4Rα R576 alleles (QR and RR) and IL-4Rα Q576 (QQ) controls was assessed by flow cytometric analysis of cells and quantitative RT-PCR analysis of cytokines in skin. RESULTS: The frequency of nighttime itching in 190 asthmatic inner-city children with AD, as well as Rajka-Langeland and Eczema Area and Severity Index scores in 1116 White patients with AD enrolled in the Atopic Dermatitis Research Network, was higher in subjects with the IL-4Rα R576 polymorphism compared with those without, with statistical significance for the Rajka-Langeland score. Following epicutaneous sensitization of mice with ovalbumin or house dust mite, skin infiltration by CD4+ cells and eosinophils, cutaneous expression of Il4 and Il13, transepidermal water loss, antigen-specific IgE antibody levels, and IL-13 secretion by antigen-stimulated splenocytes were significantly higher in RR and QR mice compared with QQ controls. Bone marrow radiation chimeras demonstrated that both hematopoietic cells and stromal cells contribute to the mutants' exaggerated allergic skin inflammation. CONCLUSIONS: The IL-4Rα R576 polymorphism predisposes to more severe AD and increases allergic skin inflammation in mice.
Subject(s)
Dermatitis, Atopic , Eczema , Mice , Animals , Interleukin-13/genetics , Interleukin-13/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , Th2 Cells , Skin/metabolism , Cytokines/metabolism , Inflammation/metabolism , Pruritus/metabolism , Eczema/metabolismABSTRACT
BACKGROUND: Staphylococcus aureus and Staphylococcus epidermidis are the most abundant bacteria found on the skin of patients with atopic dermatitis (AD). S aureus is known to exacerbate AD, whereas S epidermidis has been considered a beneficial commensal organism. OBJECTIVE: In this study, we hypothesized that S epidermidis could promote skin damage in AD by the production of a protease that damages the epidermal barrier. METHODS: The protease activity of S epidermidis isolates was compared with that of other staphylococcal species. The capacity of S epidermidis to degrade the barrier and induce inflammation was examined by using human keratinocyte tissue culture and mouse models. Skin swabs from atopic and healthy adult subjects were analyzed for the presence of S epidermidis genomic DNA and mRNA. RESULTS: S epidermidis strains were observed to produce strong cysteine protease activity when grown at high density. The enzyme responsible for this activity was identified as EcpA, a cysteine protease under quorum sensing control. EcpA was shown to degrade desmoglein-1 and LL-37 in vitro, disrupt the physical barrier, and induce skin inflammation in mice. The abundance of S epidermidis and expression of ecpA mRNA were increased on the skin of some patients with AD, and this correlated with disease severity. Another commensal skin bacterial species, Staphylococcus hominis, can inhibit EcpA production by S epidermidis. CONCLUSION: S epidermidis has commonly been regarded as a beneficial skin microbe, whereas S aureus has been considered deleterious. This study suggests that the overabundance of S epidermidis found on some atopic patients can act similarly to S aureus and damage the skin by expression of a cysteine protease.
Subject(s)
Bacterial Proteins/metabolism , Cysteine Proteases/metabolism , Dermatitis, Atopic/microbiology , Microbiota , Skin/microbiology , Staphylococcal Skin Infections/microbiology , Staphylococcus epidermidis/enzymology , Animals , Antimicrobial Cationic Peptides/metabolism , Cells, Cultured , DNA, Bacterial/genetics , Dermatitis, Atopic/pathology , Desmoglein 1/metabolism , Humans , Keratinocytes/microbiology , Keratinocytes/pathology , Mice , Mice, Inbred C57BL , Severity of Illness Index , Skin/pathology , Staphylococcal Skin Infections/pathology , CathelicidinsABSTRACT
BACKGROUND: Total serum IgE (tIgE) is an important intermediate phenotype of allergic disease. Whole genome genetic association studies across ancestries may identify important determinants of IgE. OBJECTIVE: We aimed to increase understanding of genetic variants affecting tIgE production across the ancestry and allergic disease spectrum by leveraging data from the National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine program; the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA); and the Atopic Dermatitis Research Network (N = 21,901). METHODS: We performed genome-wide association within strata of study, disease, and ancestry groups, and we combined results via a meta-regression approach that models heterogeneity attributable to ancestry. We also tested for association between HLA alleles called from whole genome sequence data and tIgE, assessing replication of associations in HLA alleles called from genotype array data. RESULTS: We identified 6 loci at genome-wide significance (P < 5 × 10-9), including 4 loci previously reported as genome-wide significant for tIgE, as well as new regions in chr11q13.5 and chr15q22.2, which were also identified in prior genome-wide association studies of atopic dermatitis and asthma. In the HLA allele association study, HLA-A∗02:01 was associated with decreased tIgE level (Pdiscovery = 2 × 10-4; Preplication = 5 × 10-4; Pdiscovery+replication = 4 × 10-7), and HLA-DQB1∗03:02 was strongly associated with decreased tIgE level in Hispanic/Latino ancestry populations (PHispanic/Latino discovery+replication = 8 × 10-8). CONCLUSION: We performed the largest genome-wide association study and HLA association study of tIgE focused on ancestrally diverse populations and found several known tIgE and allergic disease loci that are relevant in non-European ancestry populations.
Subject(s)
Asthma/genetics , Dermatitis, Atopic/genetics , Ethnicity , Genotype , HLA-A2 Antigen/genetics , HLA-DQ beta-Chains/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Gene Frequency , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Immunoglobulin E/blood , Male , Middle Aged , National Heart, Lung, and Blood Institute (U.S.) , United States , Whole Genome Sequencing , Young AdultABSTRACT
Epithelial keratinocyte proliferation is an essential element of wound repair, and abnormal epithelial proliferation is an intrinsic element in the skin disorder psoriasis. The factors that trigger epithelial proliferation in these inflammatory processes are incompletely understood. Here we have shown that regenerating islet-derived protein 3-alpha (REG3A) is highly expressed in keratinocytes during psoriasis and wound repair and in imiquimod-induced psoriatic skin lesions. The expression of REG3A by keratinocytes is induced by interleukin-17 (IL-17) via activation of keratinocyte-encoded IL-17 receptor A (IL-17RA) and feeds back on keratinocytes to inhibit terminal differentiation and increase cell proliferation by binding to exostosin-like 3 (EXTL3) followed by activation of phosphatidylinositol 3 kinase (PI3K) and the kinase AKT. These findings reveal that REG3A, a secreted intestinal antimicrobial protein, can promote skin keratinocyte proliferation and can be induced by IL-17. This observation suggests that REG3A may mediate the epidermal hyperproliferation observed in normal wound repair and in psoriasis.
Subject(s)
Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Cell Differentiation , Keratinocytes/cytology , Keratinocytes/metabolism , Lectins, C-Type/metabolism , Skin/injuries , Skin/metabolism , Animals , Antigens, Neoplasm/genetics , Biomarkers, Tumor/genetics , Cell Differentiation/genetics , Cell Proliferation , Epidermis/drug effects , Epidermis/injuries , Epidermis/metabolism , Gene Expression/drug effects , Humans , Interleukin-17/pharmacology , Keratinocytes/drug effects , Lectins, C-Type/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , N-Acetylglucosaminyltransferases/metabolism , Pancreatitis-Associated Proteins , Phosphatidylinositol 3-Kinases/metabolism , Proteins/genetics , Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Psoriasis/immunology , Psoriasis/metabolism , Psoriasis/pathology , Signal Transduction , Skin/drug effects , Wound Healing/geneticsABSTRACT
Rosacea is a chronic inflammatory skin condition that affects approximately 16 million Americans. Four distinct subtypes of rosacea have been recognized, with transient and nontransient facial flushing, telangiectasia, and inflammatory papules and pustules being among the more commonly recognized features. Although the exact pathogenesis of rosacea is unknown, dysregulation of the innate immune system, overgrowth of commensal skin organisms, and aberrant neurovascular signaling may all have a role in promoting the clinical features of rosacea.
Subject(s)
Rosacea , Humans , Immune System/microbiology , Immune System/physiopathology , Nervous System/physiopathology , Risk Factors , Rosacea/classification , Rosacea/etiology , Rosacea/immunology , Rosacea/pathology , Rosacea/physiopathology , Skin/physiopathology , Ultraviolet RaysABSTRACT
Although rosacea's impact on physical health is limited, it has profound effects on a person's psychological well-being. Therefore, treating rosacea can greatly affect a person's quality of life. Patient education regarding trigger avoidance and skin care techniques such as moisturizing and sun protection are important non-pharmacologic first steps in treating rosacea. Pharmacologic interventions range from topical to systemic medications, with the ideal medication choice dependent on the symptoms and severity of each individual patient. Despite this variety of therapeutic options, none of these therapies are completely curative, and therefore further research into the pathophysiology of rosacea is required in order to create more targeted and efficacious treatment options.
Subject(s)
Rosacea/drug therapy , Administration, Topical , Adrenergic alpha-Agonists/administration & dosage , Calcineurin Inhibitors/administration & dosage , Dicarboxylic Acids/therapeutic use , Humans , Ivermectin/administration & dosage , Mast Cells/drug effects , Patient Education as Topic , Retinoids/administration & dosage , Rosacea/therapy , Serine Proteinase Inhibitors/administration & dosage , Tetracyclines/administration & dosageABSTRACT
BACKGROUND: Merkel cell carcinoma (MCC) is a rare and aggressive neurocutaneous malignancy that frequently arises in sun-exposed areas of the head and neck. Standard therapy focuses on wide local excision (WLE) with adjuvant locoregional radiotherapy. However, treatment is often complicated by concerns for cosmesis and for preservation of the head and neck neurovasculature. OBJECTIVE: To explore treatment-related outcomes of the head and neck MCC. METHODS: A MEDLINE and Google Scholar search was performed for studies focusing on the head and neck MCC treatment. RESULTS: The search terms produced 100 articles. Seventeen studies met eligibility/screening criteria, yielding 868 patients. Three of the 6 relevant studies found a significant difference in disease-free survival (DFS) between surgery and surgery plus adjuvant radiation. Two studies found no difference in DFS or overall survival (OS) in patients receiving chemotherapy. Two studies found no difference in DFS between radiotherapy and surgery with adjuvant radiation. No difference in OS was found between WLE and Mohs surgery. CONCLUSION: In an uncomplicated head and neck MCC, treatment with surgery and adjuvant radiotherapy is effective in increasing survival and reducing recurrence. Radiotherapy alone may be appropriate for inoperable regions. Primary chemotherapy seems to have a limited role; however, few studies explored this treatment modality.
Subject(s)
Carcinoma, Merkel Cell/therapy , Head and Neck Neoplasms/therapy , Combined Modality Therapy , Disease-Free Survival , Humans , Neoplasm Recurrence, Local , PrognosisABSTRACT
Cutibacterium acnes is a commensal bacterium on the skin that is generally well-tolerated, but different strain types have been hypothesized to contribute to the disease acne vulgaris. To understand how some strain types might contribute to skin inflammation, we generated a repository of C. acnes isolates from skin swabs of healthy subjects and subjects with acne and assessed their strain-level identity and capacity to stimulate cytokine release. Phylotype II K-type strains were more frequent on healthy and nonlesional skin of subjects with acne than those isolated from lesions. Phylotype IA-1 C-type strains were increased on lesional skin compared with those on healthy skin. The capacity to induce cytokines from cultured monocyte-derived dendritic cells was opposite to this action on sebocytes and keratinocytes and did not correlate with the strain types associated with the disease. Whole-genome sequencing revealed a linear plasmid in high-inflammatory isolates within similar strain types that had different proinflammatory responses. Single-cell RNA sequencing of mouse skin after intradermal injection showed that strains containing this plasmid induced a higher inflammatory response in dermal fibroblasts. These findings revealed that C. acnes strain type is insufficient to predict inflammation and that carriage of a plasmid could contribute to disease.
Subject(s)
Acne Vulgaris , Dermatitis , Animals , Mice , Humans , Skin/microbiology , Acne Vulgaris/microbiology , Propionibacterium acnes/genetics , Plasmids/genetics , Inflammation , Cytokines/geneticsABSTRACT
Cathelicidin is increased when normal skin is injured and in psoriasis lesions where it has been suggested to play a pivotal role in inflammation through interactions with self-DNA and toll-like receptor 9 (TLR-9) in keratinocytes and plasmacytoid dendritic cells. Because of etanercept's success in treating psoriasis, we hypothesized that etanercept may suppress TLR-9 and cathelicidin induction. Examination of experimentally induced wounds of psoriatic lesional and non-lesional skin, and comparison with wounded normal skin, shows that the induction of cathelicidin and TLR-9 is greatly enhanced in lesional psoriatic skin. Six weeks of etanercept appears not to affect the baseline expression of cathelicidin or TLR-9, but does blunt the induction of cathelicidin in psoriasis with wounding. These findings support the role of cathelicidin in the enhancement of local inflammation in psoriasis and may partially explain one of the mechanisms enabling TNF-α inhibitors to successfully treat this disorder.
Subject(s)
Immunity, Innate/drug effects , Immunoglobulin G/pharmacology , Psoriasis/drug therapy , Psoriasis/immunology , Antimicrobial Cationic Peptides , Cathelicidins/biosynthesis , Etanercept , Humans , Immunosuppressive Agents/pharmacology , Psoriasis/metabolism , Receptors, Tumor Necrosis Factor , Toll-Like Receptor 9/biosynthesis , Wounds and Injuries/drug therapy , Wounds and Injuries/immunology , Wounds and Injuries/metabolismABSTRACT
During inflammation, the skin deploys antimicrobial peptides (AMPs) yet during allergic inflammation it becomes more susceptible to Staphylococcus aureus. To understand this contradiction, single-cell sequencing of Il4ra-/- mice combined with skin microbiome analysis reveals that lower production of AMPs from interleukin-4 receptor α (IL-4Rα) activation selectively inhibits survival of antibiotic-producing strains of coagulase-negative Staphylococcus (CoNS). Diminished AMPs under conditions of T helper type 2 (Th2) inflammation enable expansion of CoNS strains without antibiotic activity and increase Staphylococcus aureus (S. aureus), recapitulating the microbiome on humans with atopic dermatitis. This response is rescued in Camp-/- mice or after topical steroids, since further inhibition of AMPs enables survival of antibiotic-producing CoNS strains. In conditions of Th17 inflammation, a higher expression of host AMPs is sufficient to directly inhibit S. aureus survival. These results show that antimicrobials produced by the host and commensal bacteria each act to control S. aureus on the skin.
Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Animals , Mice , Staphylococcus aureus/metabolism , Antimicrobial Peptides , Skin/microbiology , Inflammation , Bacteria , Staphylococcus , Anti-Bacterial Agents/metabolismABSTRACT
BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with increased susceptibility to recurrent skin infections. OBJECTIVE: We sought to determine why a subset of patients with AD have an increased risk of disseminated viral skin infections. METHODS: Human subjects with AD with a history of eczema herpeticum (EH) and various control groups were enrolled. Vaccinia virus (VV) expression was measured by means of PCR and immunofluorescent staining in skin biopsy specimens from each study group after incubation with VV. Transgenic mice with a constitutively active signal transducer and activator of transcription 6 gene (STAT6) were characterized for response to VV skin inoculation. Genotyping for 10 STAT6 single nucleotide polymorphisms (SNPs) was performed in a white patient sample (n = 444). RESULTS: VV gene and protein expression were significantly increased in the skin of patients with EH compared with other subject groups after incubation with VV in vitro. Antibody neutralization of IL-4 and IL-13 resulted in lower VV replication in patients with a history of EH. Mice that expressed a constitutively active STAT6 gene compared with wild-type mice had increased mortality and satellite lesion formation after VV skin inoculation. Significant associations were observed between STAT6 SNPs and EH (rs3024975, rs841718, rs167769, and rs703817) and IFN-γ production. The strongest association was observed for a 2-SNP haplotype (patients with AD with a history of EH vs patients with AD without a history of EH, 24.9% vs 9.2%; P = 5.17 × 10(-6)). CONCLUSION: The STAT6 gene increases viral replication in the skin of patients with AD with a history of EH. Further genetic association studies and functional investigations are warranted.
Subject(s)
Dermatitis, Atopic/complications , Dermatitis, Atopic/genetics , Kaposi Varicelliform Eruption/complications , Kaposi Varicelliform Eruption/genetics , STAT6 Transcription Factor/genetics , Skin Diseases, Viral/complications , Adult , Animals , Dermatitis, Atopic/virology , Fluorescent Antibody Technique , Genetic Predisposition to Disease/genetics , Humans , Kaposi Varicelliform Eruption/virology , Mice , Mice, Transgenic , Polymorphism, Single Nucleotide , Skin Diseases, Viral/genetics , Smallpox Vaccine/adverse effects , Vaccinia/complications , Vaccinia/genetics , Vaccinia virusABSTRACT
BACKGROUND: The basis for increased susceptibility of patients with atopic dermatitis (AD) to develop disseminated viral skin infections such as eczema herpeticum (AD with a history of eczema herpeticum, ADEH(+)) is poorly understood. OBJECTIVE: We sought to determine whether subjects with AD prone to disseminated viral skin infections have defects in their IFN responses. METHODS: GeneChip profiling was used to identify differences in gene expression of PBMCs from patients with ADEH(+) compared with patients with AD without a history of eczema herpeticum (ADEH(-)) and nonatopic controls. Key differences in protein expression were verified by enzyme-linked immunosorbent spot assay and/or ELISA. Clinical relevance was further demonstrated by a mouse model of disseminated viral skin infection and genetic association analysis for genetic variants in IFNG and IFNGR1 and ADEH among 435 cases and controls. RESULTS: We demonstrate by global gene expression analysis selective transcriptomic changes within the IFN superfamily of PBMCs from subjects with ADEH(+) reflecting low IFN-γ and IFN-γ receptor gene expression. IFN-γ protein production was also significantly lower in patients with ADEH(+) (n = 24) compared with patients with ADEH(-) (n = 20) and nonatopic controls (n = 20). IFN-γ receptor knockout mice developed disseminated viral skin infection after epicutaneous challenge with vaccinia virus. Genetic variants in IFNG and IFNGR1 single nucleotide polymorphisms (SNPs) were significantly associated with ADEH (112 cases, 166 controls) and IFN-γ production: a 2-SNP (A-G) IFNGR1 haplotype (rs10457655 and rs7749390) showed the strongest association with a reduced risk of ADEH+ (13.2% ADEH(+) vs 25.5% ADEH(-); P = .00057). CONCLUSION: Patients with ADEH(+) have reduced IFN-γ production, and IFNG and IFNGR1 SNPs are significantly associated with ADEH(+) and may contribute to an impaired immune response to herpes simplex virus.
Subject(s)
Dermatitis, Atopic/complications , Dermatitis, Atopic/genetics , Interferon-gamma/genetics , Kaposi Varicelliform Eruption/complications , Kaposi Varicelliform Eruption/genetics , Animals , Dermatitis, Atopic/immunology , Enzyme-Linked Immunosorbent Assay , Gene Expression Profiling , Genetic Predisposition to Disease , Humans , Interferon-gamma/immunology , Kaposi Varicelliform Eruption/immunology , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Receptors, Interferon/genetics , Receptors, Interferon/immunology , Interferon gamma ReceptorABSTRACT
Innate immune defense against deep tissue infection by Staphylococcus aureus is orchestrated by fibroblasts that become antimicrobial when triggered to differentiate into adipocytes. However, the role of this process in noninfectious human diseases is unknown. To investigate the potential role of adipogenesis by dermal fibroblasts in acne, a disorder triggered by Cutibacterium acnes, single-cell RNA sequencing was performed on human acne lesions and mouse skin challenged by C. acnes. A transcriptome consistent with adipogenesis was observed within specific fibroblast subsets from human acne and mouse skin lesions infected with C. acnes. Perifollicular dermal preadipocytes in human acne and mouse skin lesions showed colocalization of PREF1, an early marker of adipogenesis, and cathelicidin (Camp), an antimicrobial peptide. This capacity of C. acnes to specifically trigger production of cathelicidin in preadipocytes was dependent on TLR2. Treatment of wild-type mice with retinoic acid (RA) suppressed the capacity of C. acnes to form acne-like lesions, inhibited adipogenesis, and enhanced cathelicidin expression in preadipocytes, but lesions were unresponsive in Camp-/- mice, despite the anti-adipogenic action of RA. Analysis of inflamed skin of acne patients after retinoid treatment also showed enhanced induction of cathelicidin, a previously unknown beneficial effect of retinoids in difficult-to-treat acne. Overall, these data provide evidence that adipogenic fibroblasts are a critical component of the pathogenesis of acne and represent a potential target for therapy.
Subject(s)
Acne Vulgaris , Anti-Infective Agents , Skin Diseases , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Humans , Mice , Propionibacterium acnes/metabolism , Staphylococcus aureus , Tretinoin/pharmacologyABSTRACT
IMPORTANCE: Atopic dermatitis (AD) can be negatively affected by Staphylococcus aureus. The skin microbiome of AD is deficient in coagulase-negative Staphylococcus (CoNS) that can kill S aureus. OBJECTIVE: To evaluate if the antimicrobial-producing CoNS (CoNS-AM+) of a patient with AD can be autologously reintroduced to the same patient to inhibit survival of S aureus and improve clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS: This double-blind, vehicle-controlled, single-center randomized clinical trial of 11 adult patients with moderate to severe AD who were randomized to receive either an autologous CoNS-AM+ (n = 5) or the vehicle (n = 6) was conducted between April 2016 and May 2018. The data were analyzed from May 2018 to July 2019. INTERVENTIONS: Autologous CoNS-AM+ was isolated from swabs that were obtained from the nonlesional skin of each patient with AD, expanded by culture, and then reapplied topically to the forearms at a concentration of 107 colony-forming units/g. MAIN OUTCOMES AND MEASURES: The primary end point of this study was to assess S aureus abundance after 1 week of application of autologous CoNS-AM+ on patients with AD by culture-based and DNA-based methods. The secondary end points were to assess the safety and clinical outcomes. RESULTS: Eleven patients (4 men [36.4%] and 7 women [63/6%]) were recruited based on the inclusion criteria. There were no serious adverse events in groups treated with autologous CoNS-AM+ or the vehicle. Staphylococcus aureus colonization on lesional skin at the end of treatment on patients who were treated with autologous CoNS-AM+ (mean of log10 ratio to baseline, -1.702; 95% CI, -2.882 to -0.523) was reduced by 99.2% compared with vehicle treatment (mean of log10 ratio to baseline, 0.671; 95% CI, -0.289 to 1.613; P = .01) and persisted for 4 days after treatment (CoNS-AM+: mean of log10 ratio to baseline, -1.752; 95% CI, -3.051 to -0.453; vehicle: mean of log10 ratio to baseline, -0.003; 95% CI, -1.083 to 1.076; P = .03). Importantly, local Eczema Area And Severity Index scores that were assessed at day 11 on patients who received CoNS-AM+ (mean of percentage change, -48.45; 95% CI, -84.34 to -12.55) were significantly improved compared with vehicle treatment (mean of percentage change, -4.52; 95% CI, -36.25 to 27.22; P = .04). CONCLUSIONS AND RELEVANCE: The data from this randomized clinical trial suggest that bacteriotherapy with an autologous strain of skin commensal bacteria can safely decrease S aureus colonization and improve disease severity. Although larger studies will be needed, this personalized approach for S aureus reduction may provide an alternative treatment for patients with AD beyond antibiotics, immunosuppression, and immunomodulation. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03158012.
ABSTRACT
Staphylococcus aureus colonizes patients with atopic dermatitis (AD) and exacerbates disease by promoting inflammation. The present study investigated the safety and mechanisms of action of Staphylococcus hominis A9 (ShA9), a bacterium isolated from healthy human skin, as a topical therapy for AD. ShA9 killed S. aureus on the skin of mice and inhibited expression of a toxin from S. aureus (psmα) that promotes inflammation. A first-in-human, phase 1, double-blinded, randomized 1-week trial of topical ShA9 or vehicle on the forearm skin of 54 adults with S. aureus-positive AD (NCT03151148) met its primary endpoint of safety, and participants receiving ShA9 had fewer adverse events associated with AD. Eczema severity was not significantly different when evaluated in all participants treated with ShA9 but a significant decrease in S. aureus and increased ShA9 DNA were seen and met secondary endpoints. Some S. aureus strains on participants were not directly killed by ShA9, but expression of mRNA for psmα was inhibited in all strains. Improvement in local eczema severity was suggested by post-hoc analysis of participants with S. aureus directly killed by ShA9. These observations demonstrate the safety and potential benefits of bacteriotherapy for AD.
Subject(s)
Dermatitis, Atopic/microbiology , Dermatitis, Atopic/therapy , Skin/microbiology , Staphylococcus hominis/physiology , Administration, Topical , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Bacterial Proteins/metabolism , Bacteriocins/pharmacology , Colony Count, Microbial , Humans , Inflammation/complications , Inflammation/pathology , Mice, Inbred BALB C , Microbial Sensitivity Tests , Microbial Viability/drug effects , Middle Aged , Peptides, Cyclic/metabolism , Reproducibility of Results , Skin/drug effects , Skin/pathology , Staphylococcal Infections/microbiology , Staphylococcal Infections/therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Staphylococcus aureus/physiology , Transcription, Genetic/drug effects , Treatment Outcome , Virulence Factors/metabolism , Young AdultABSTRACT
The innate immune system evolved more than 2 billion years ago to first recognize pathogens then eradicate them. Several distinct defects in this ancient but rapidly responsive element of human immune defense account for the increased incidence of skin infections in atopics. These defects include abnormalities in the physical barrier of the epidermis, alterations in microbial pattern recognition receptors such as toll receptors and nucleotide binding oligomerization domains, and a diminished capacity to increase the expression of antimicrobial peptides during inflammation. Several antimicrobial peptides are affected including; cathelicidin, HBD-2, and HBD-3, which are lower in lesional skin of atopics compared with other inflammatory skin diseases, and dermcidin, which is decreased in sweat. Other defects in the immune defense barrier of atopics include a relative deficiency in plasmacytoid dendritic cells. In the future, understanding the cause of these defects may allow therapeutic intervention to reduce the incidence of infection in atopic individuals and potentially decrease the severity of this disorder.
Subject(s)
Antimicrobial Cationic Peptides/biosynthesis , Dermatitis, Atopic/metabolism , Immunity, Innate/immunology , Skin Diseases, Infectious/metabolism , Dermatitis, Atopic/complications , Dermatitis, Atopic/immunology , Humans , Skin Diseases, Infectious/complications , Skin Diseases, Infectious/immunologyABSTRACT
Birt-Hogg-Dubé syndrome (BHD) is an autosomal dominant genodermatosis with malignant potential characterized by cutaneous and extracutaneous stigmata. Aberrations in the folliculin (FLCN) gene, which is located on chromosome 17, have been discovered in individuals with this condition. Over 150 unique mutations have been identified in BHD. The skin lesions associated with this condition include fibrofolliculomas, trichodiscomas, perifollicular fibromas, and acrochordons. Extracutaneous features of the syndrome typically include the lung (spontaneous pneumothorax and cysts) and the kidney (neoplasms). The only malignancies associated with BHD are renal cancers; however, other tumors have been observed in individuals with BHD. In this article, the skin lesions associated with this condition are reviewed, lung and renal manifestations associated with this syndrome are presented, and malignancies occurring in these patients are summarized.
Subject(s)
Birt-Hogg-Dube Syndrome/complications , Kidney Neoplasms/etiology , Pneumothorax/etiology , Proto-Oncogene Proteins/genetics , Skin Neoplasms/etiology , Tumor Suppressor Proteins/genetics , Birt-Hogg-Dube Syndrome/epidemiology , Birt-Hogg-Dube Syndrome/genetics , Chromosomes, Human, Pair 17/genetics , Cysts/etiology , Humans , Lung/pathology , Mutation , Skin/pathologyABSTRACT
Inflammatory acne vulgaris afflicts hundreds of millions of people globally. Propionibacterium acnes, an opportunistic skin bacterium, has been linked to the pathogenesis of acne vulgaris. Our results show that a secretory Christie-Atkins-Munch-Petersen (CAMP) factor of P. acnes is up-regulated in anaerobic cultures. Mutation of CAMP factor significantly diminishes P. acnes colonization and inflammation in mice, demonstrating the essential role of CAMP factor in the cytotoxicity of P. acnes. Vaccination of mice with CAMP factor considerably reduced the growth of P. acnes and production of MIP-2, a murine counterpart of human IL-8. Acne lesions were collected from patients to establish an ex vivo acne model for validation of the efficacy of CAMP factor antibodies in the neutralization of the acne inflammatory response. The P. acnes CAMP factor and two proinflammatory cytokines (IL-8 and IL-1ß) were expressed at higher levels in acne lesions than those in nonlesional skin. Incubation of ex vivo acne explants with monoclonal antibodies to CAMP factor markedly attenuated the amounts of IL-8 and IL-1ß. Our work using an ex vivo acne model shows that P. acnes CAMP factor is an essential source of inflammation in acne vulgaris.
Subject(s)
Acne Vulgaris/immunology , Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Gram-Positive Bacterial Infections/immunology , Hemolysin Proteins/immunology , Propionibacterium acnes/physiology , Skin/pathology , Virulence Factors/immunology , Acne Vulgaris/genetics , Animals , Antibodies, Blocking/pharmacology , Bacterial Proteins/genetics , Cells, Cultured , Chemokine CXCL2/metabolism , Female , Hemolysin Proteins/genetics , Humans , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Mice , Mice, Inbred ICR , Mutation , Propionibacterium acnes/pathogenicity , Skin/microbiology , Vaccination , Virulence , Virulence Factors/geneticsABSTRACT
INTRODUCTION: Atopic dermatitis (AD) is related to other atopic diseases asthma and allergic rhinitis. It is known that those with asthma or allergic rhinitis have impaired immune responses that may predispose them to infections. This study sought to determine whether adult AD is associated with systemic infections, and whether association is strengthened in those with AD plus another atopic disease. METHODS: This cross-sectional study obtained information from adults in the 2010 and the 2012 National Health Interview Survey (NHIS). The primary exposure was history of AD without or with an additional atopic disease, asthma or allergic rhinitis. Self-reported systemic infections were the primary outcomes. Survey logistic regression was performed and adjusted odds ratios (aOR) reported. RESULTS: AD in NHIS 2010 was associated with increased risk of sinusitis [aOR (95% CIs): 1.65 (1.42, 1.91), P < 0.001], head or chest cold [1.31 (1.12, 1.52), P < 0.001], and gastrointestinal illness [2.39 (1.97, 2.89), P < 0.001], and in NHIS 2012, pneumonia/influenza [1.73 (1.54, 1.95), P < 0.001], strep throat/tonsillitis [1.72 (1.54, 1.92), P < 0.001], sinusitis [1.77 (1.54, 2.02), P < 0.001], head or chest cold [1.49 (1.33, 1.67), P < 0.001], and infectious disease [2.66 (2.20, 3.21), P < 0.001]. An increase in atopic disease mirrored an increase in number of infectious outcomes and was statistically significant in the combined dataset (P < 0.001). CONCLUSION: The associations between AD and AD plus another atopic disease with systemic infections suggest that an underlying immune defect may be contributing to microbial susceptibility. Further studies are warranted to understand the burden of infectious disease in this population.
ABSTRACT
Familial multiple trichodiscomas is a condition characterized by multiple asymptomatic skin papules. The inheritance pattern has not been established. The skin lesions usually appear in childhood. The diagnosis of the cutaneous papules is established by pathologic evaluation. Birt-Hogg-Dubé syndrome is excluded by not detecting any aberration in the folliculin gene locus. Including our patient, 15 index individuals and their families are described. There is no systemic organ involvement or associated malignancies in individuals with this condition.