Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell ; 186(23): 5165-5182.e33, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37852259

ABSTRACT

Schizophrenia (SCZ) is a highly heritable mental disorder with thousands of associated genetic variants located mostly in the noncoding space of the genome. Translating these associations into insights regarding the underlying pathomechanisms has been challenging because the causal variants, their mechanisms of action, and their target genes remain largely unknown. We implemented a massively parallel variant annotation pipeline (MVAP) to perform SCZ variant-to-function mapping at scale in disease-relevant neural cell types. This approach identified 620 functional variants (1.7%) that operate in a highly developmental context and neuronal-activity-dependent manner. Multimodal integration of epigenomic and CRISPRi screening data enabled us to link these functional variants to target genes, biological processes, and ultimately alterations of neuronal physiology. These results provide a multistage prioritization strategy to map functional single-nucleotide polymorphism (SNP)-to-gene-to-endophenotype relations and offer biological insights into the context-dependent molecular processes modulated by SCZ-associated genetic variation.


Subject(s)
Schizophrenia , Humans , Genetic Predisposition to Disease , Genome-Wide Association Study , Neurons/metabolism , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics , Animals , Mice , High-Throughput Nucleotide Sequencing
2.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38260577

ABSTRACT

Schizophrenia (SCZ) is a genetically heterogenous psychiatric disorder of highly polygenic nature. Correlative evidence from genetic studies indicate that the aggregated effects of distinct genetic risk factor combinations found in each patient converge onto common molecular mechanisms. To prove this on a functional level, we employed a reductionistic cellular model system for polygenic risk by differentiating induced pluripotent stem cells (iPSCs) from 104 individuals with high polygenic risk load and controls into cortical glutamatergic neurons (iNs). Multi-omics profiling identified widespread differences in alternative polyadenylation (APA) in the 3' untranslated region of many synaptic transcripts between iNs from SCZ patients and healthy donors. On the cellular level, 3'APA was associated with a reduction in synaptic density of iNs. Importantly, differential APA was largely conserved between postmortem human prefrontal cortex from SCZ patients and healthy donors, and strongly enriched for transcripts related to synapse biology. 3'APA was highly correlated with SCZ polygenic risk and affected genes were significantly enriched for SCZ associated common genetic variation. Integrative functional genomic analysis identified the RNA binding protein and SCZ GWAS risk gene PTBP2 as a critical trans-acting factor mediating 3'APA of synaptic genes in SCZ subjects. Functional characterization of PTBP2 in iNs confirmed its key role in 3'APA of synaptic transcripts and regulation of synapse density. Jointly, our findings show that the aggregated effects of polygenic risk converge on 3'APA as one common molecular mechanism that underlies synaptic impairments in SCZ.

3.
Neuron ; 110(14): 2283-2298.e9, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35649415

ABSTRACT

A single sub-anesthetic dose of ketamine produces a rapid and sustained antidepressant response, yet the molecular mechanisms responsible for this remain unclear. Here, we identified cell-type-specific transcriptional signatures associated with a sustained ketamine response in mice. Most interestingly, we identified the Kcnq2 gene as an important downstream regulator of ketamine action in glutamatergic neurons of the ventral hippocampus. We validated these findings through a series of complementary molecular, electrophysiological, cellular, pharmacological, behavioral, and functional experiments. We demonstrated that adjunctive treatment with retigabine, a KCNQ activator, augments ketamine's antidepressant-like effects in mice. Intriguingly, these effects are ketamine specific, as they do not modulate a response to classical antidepressants, such as escitalopram. These findings significantly advance our understanding of the mechanisms underlying the sustained antidepressant effects of ketamine, with important clinical implications.


Subject(s)
Ketamine , Animals , Antidepressive Agents/pharmacology , Hippocampus , KCNQ2 Potassium Channel/genetics , Ketamine/pharmacology , Ketamine/therapeutic use , Mice , Nerve Tissue Proteins , Neurons
4.
J Med Chem ; 57(22): 9473-9, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25318072

ABSTRACT

B(0)AT2, encoded by the SLC6A15 gene, is a transporter for neutral amino acids that has recently been implicated in mood and metabolic disorders. It is predominantly expressed in the brain, but little is otherwise known about its function. To identify inhibitors for this transporter, we screened a library of 3133 different bioactive compounds. Loratadine, a clinically used histamine H1 receptor antagonist, was identified as a selective inhibitor of B(0)AT2 with an IC50 of 4 µM while being less active or inactive against several other members of the SLC6 family. Reversible inhibition of B(0)AT2 was confirmed by electrophysiology. A series of loratadine analogues were synthesized to gain insight into the structure-activity relationships. Our studies provide the first chemical tool for B(0)AT2.


Subject(s)
Amino Acid Transport Systems, Neutral/antagonists & inhibitors , Histamine H1 Antagonists, Non-Sedating/chemistry , Loratadine/analogs & derivatives , Nerve Tissue Proteins/antagonists & inhibitors , Amino Acid Transport Systems, Neutral/chemistry , Binding, Competitive , Brain/drug effects , Cell Membrane/metabolism , Chemistry, Pharmaceutical/methods , Electrophysiology , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Inhibitory Concentration 50 , Kinetics , Nerve Tissue Proteins/chemistry , Patch-Clamp Techniques , Receptors, Histamine H1/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL