Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Res Sq ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38978604

ABSTRACT

Type 2 Diabetes (T2D) is a condition that is often associated with obesity and defined by reduced sensitivity of PI3K signaling to insulin (insulin resistance), hyperinsulinemia and hyperglycemia. Molecular causes and early signaling events underlying insulin resistance are not well understood. Insulin activation of PI3K signaling causes mTOR dependent induction of PTEN translation, a negative regulator of PI3K signaling. We speculated that insulin resistance is due to insulin dependent induction of PTEN protein that prevent further increases in PI3K signaling. Here we show that in a diet induced model of obesity and insulin resistance, PTEN levels are increased in fat, muscle and liver tissues. Onset of hyperinsulinemia and PTEN induction in tissue is followed by hyperglycemia, hepatic steatosis and severe glucose intolerance. Treatment with a PTEN phosphatase inhibitor prevents and reverses these phenotypes, whereas an mTORC1 kinase inhibitor reverses all but the hepatic steatosis. These data suggest that induction of PTEN by increasing levels of insulin elevates feedback inhibition of the pathway to a point where downstream PI3K signaling is reduced and hyperglycemia ensues. PTEN induction is thus necessary for insulin resistance and the type 2 diabetes phenotype and a potential therapeutic target.

2.
Cancer Res Commun ; 3(9): 1788-1799, 2023 09.
Article in English | MEDLINE | ID: mdl-37691854

ABSTRACT

The FOXA1 pioneer factor is an essential mediator of steroid receptor function in multiple hormone-dependent cancers, including breast and prostate cancers, enabling nuclear receptors such as estrogen receptor (ER) and androgen receptor (AR) to activate lineage-specific growth programs. FOXA1 is also highly expressed in non-small cell lung cancer (NSCLC), but whether and how it regulates tumor growth in this context is not known. Analyzing data from loss-of-function screens, we identified a subset of NSCLC tumor lines where proliferation is FOXA1 dependent. Using rapid immunoprecipitation and mass spectrometry of endogenous protein, we identified chromatin-localized interactions between FOXA1 and glucocorticoid receptor (GR) in these tumor cells. Knockdown of GR inhibited proliferation of FOXA1-dependent, but not FOXA1-independent NSCLC cells. In these FOXA1-dependent models, FOXA1 and GR cooperate to regulate gene targets involved in EGF signaling and G1-S cell-cycle progression. To investigate the therapeutic potential for targeting this complex, we examined the effects of highly selective inhibitors of the GR ligand-binding pocket and found that GR antagonism with ORIC-101 suppressed FOXA1/GR target expression, activation of EGF signaling, entry into the S-phase, and attendant proliferation in vitro and in vivo. Taken together, our findings point to a subset of NSCLCs harboring a dependence on the FOXA1/GR growth program and provide rationale for its therapeutic targeting. Significance: NSCLC is the leading cause of cancer deaths worldwide. There is a need to identify novel druggable dependencies. We identify a subset of NSCLCs dependent on FOXA1-GR and sensitive to GR antagonism.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Hepatocyte Nuclear Factor 3-alpha , Lung Neoplasms , Receptors, Glucocorticoid , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Epidermal Growth Factor , Lung Neoplasms/drug therapy , Receptors, Glucocorticoid/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics
3.
Cell Rep ; 39(7): 110814, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35584676

ABSTRACT

Small cell lung cancers (SCLCs) have high mutational burden but are relatively unresponsive to immune checkpoint blockade (ICB). Using SCLC models, we demonstrate that inhibition of WEE1, a G2/M checkpoint regulator induced by DNA damage, activates the STING-TBK1-IRF3 pathway, which increases type I interferons (IFN-α and IFN-ß) and pro-inflammatory chemokines (CXCL10 and CCL5), facilitating an immune response via CD8+ cytotoxic T cell infiltration. We further show that WEE1 inhibition concomitantly activates the STAT1 pathway, increasing IFN-γ and PD-L1 expression. Consistent with these findings, combined WEE1 inhibition (AZD1775) and PD-L1 blockade causes remarkable tumor regression, activation of type I and II interferon pathways, and infiltration of cytotoxic T cells in multiple immunocompetent SCLC genetically engineered mouse models, including an aggressive model with stabilized MYC. Our study demonstrates cell-autonomous and immune-stimulating activity of WEE1 inhibition in SCLC models. Combined inhibition of WEE1 plus PD-L1 blockade represents a promising immunotherapeutic approach in SCLC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , B7-H1 Antigen , Cell Cycle Proteins , Lung Neoplasms , Membrane Proteins , Protein-Tyrosine Kinases , STAT1 Transcription Factor , Small Cell Lung Carcinoma , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Drug Synergism , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Membrane Proteins/metabolism , Mice , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , STAT1 Transcription Factor/metabolism , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology
4.
Cell Rep ; 33(9): 108444, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33264619

ABSTRACT

Concurrent loss-of-function mutations in STK11 and KEAP1 in lung adenocarcinoma (LUAD) are associated with aggressive tumor growth, resistance to available therapies, and early death. We investigated the effects of coordinate STK11 and KEAP1 loss by comparing co-mutant with single mutant and wild-type isogenic counterparts in multiple LUAD models. STK11/KEAP1 co-mutation results in significantly elevated expression of ferroptosis-protective genes, including SCD and AKR1C1/2/3, and resistance to pharmacologically induced ferroptosis. CRISPR screening further nominates SCD (SCD1) as selectively essential in STK11/KEAP1 co-mutant LUAD. Genetic and pharmacological inhibition of SCD1 confirms the essentiality of this gene and augments the effects of ferroptosis induction by erastin and RSL3. Together these data identify SCD1 as a selective vulnerability and a promising candidate for targeted drug development in STK11/KEAP1 co-mutant LUAD.


Subject(s)
AMP-Activated Protein Kinase Kinases/genetics , Ferroptosis/genetics , Lung Neoplasms/genetics , Stearoyl-CoA Desaturase/genetics , AMP-Activated Protein Kinase Kinases/metabolism , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mutation , Stearoyl-CoA Desaturase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL