Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Diabetologia ; 63(7): 1368-1381, 2020 07.
Article in English | MEDLINE | ID: mdl-32350566

ABSTRACT

AIMS/HYPOTHESIS: Mitochondrial oxidative metabolism is central to glucose-stimulated insulin secretion (GSIS). Whether Ca2+ uptake into pancreatic beta cell mitochondria potentiates or antagonises this process is still a matter of debate. Although the mitochondrial Ca2+ importer (MCU) complex is thought to represent the main route for Ca2+ transport across the inner mitochondrial membrane, its role in beta cells has not previously been examined in vivo. METHODS: Here, we inactivated the pore-forming subunit of the MCU, encoded by Mcu, selectively in mouse beta cells using Ins1Cre-mediated recombination. Whole or dissociated pancreatic islets were isolated and used for live beta cell fluorescence imaging of cytosolic or mitochondrial Ca2+ concentration and ATP production in response to increasing glucose concentrations. Electrophysiological recordings were also performed on whole islets. Serum and blood samples were collected to examine oral and i.p. glucose tolerance. RESULTS: Glucose-stimulated mitochondrial Ca2+ accumulation (p< 0.05), ATP production (p< 0.05) and insulin secretion (p< 0.01) were strongly inhibited in beta cell-specific Mcu-null (ßMcu-KO) animals, in vitro, as compared with wild-type (WT) mice. Interestingly, cytosolic Ca2+ concentrations increased (p< 0.001), whereas mitochondrial membrane depolarisation improved in ßMcu-KO animals. ßMcu-KO mice displayed impaired in vivo insulin secretion at 5 min (p< 0.001) but not 15 min post-i.p. injection of glucose, whilst the opposite phenomenon was observed following an oral gavage at 5 min. Unexpectedly, glucose tolerance was improved (p< 0.05) in young ßMcu-KO (<12 weeks), but not in older animals vs WT mice. CONCLUSIONS/INTERPRETATION: MCU is crucial for mitochondrial Ca2+ uptake in pancreatic beta cells and is required for normal GSIS. The apparent compensatory mechanisms that maintain glucose tolerance in ßMcu-KO mice remain to be established.


Subject(s)
Calcium/metabolism , Mitochondria/metabolism , Animals , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Glucose/metabolism , Insulin Secretion/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
2.
Diabetes Obes Metab ; 19 Suppl 1: 30-41, 2017 09.
Article in English | MEDLINE | ID: mdl-28466490

ABSTRACT

Ca2+ is the key intracellular regulator of insulin secretion, acting in the ß-cell as the ultimate trigger for exocytosis. In response to high glucose, ATP-sensitive K+ channel closure and plasma membrane depolarization engage a sophisticated machinery to drive pulsatile cytosolic Ca2+ changes. Voltage-gated Ca2+ channels, Ca2+ -activated K+ channels and Na+ /Ca2+ exchange all play important roles. The use of targeted Ca2+ probes has revealed that during each cytosolic Ca2+ pulse, uptake of Ca2+ by mitochondria, endoplasmic reticulum (ER), secretory granules and lysosomes fine-tune cytosolic Ca2+ dynamics and control organellar function. For example, changes in the expression of the Ca2+ -binding protein Sorcin appear to provide a link between ER Ca2+ levels and ER stress, affecting ß-cell function and survival. Across the islet, intercellular communication between highly interconnected "hubs," which act as pacemaker ß-cells, and subservient "followers," ensures efficient insulin secretion. Loss of connectivity is seen after the deletion of genes associated with type 2 diabetes (T2D) and follows metabolic and inflammatory insults that characterize this disease. Hubs, which typically comprise ~1%-10% of total ß-cells, are repurposed for their specialized role by expression of high glucokinase (Gck) but lower Pdx1 and Nkx6.1 levels. Single cell-omics are poised to provide a deeper understanding of the nature of these cells and of the networks through which they communicate. New insights into the control of both the intra- and intercellular Ca2+ dynamics may thus shed light on T2D pathology and provide novel opportunities for therapy.


Subject(s)
Calcium Signaling , Cell Communication , Islets of Langerhans/metabolism , Models, Biological , Animals , Cell Membrane/enzymology , Cell Membrane/metabolism , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/metabolism , Endoplasmic Reticulum/enzymology , Endoplasmic Reticulum/metabolism , Exocytosis , Gap Junctions/enzymology , Gap Junctions/metabolism , Gene Expression Regulation , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/enzymology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/enzymology , Mitochondria/enzymology , Mitochondria/metabolism , Secretory Pathway
3.
Diabetologia ; 56(9): 2088-92, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23793715

ABSTRACT

AIMS/HYPOTHESIS: Acute systemic delivery of the sulfonylurea receptor (SUR)-1-specific ATP-sensitive K(+) channel (K(ATP)) opener, NN414, has been reported to amplify glucose counter-regulatory responses (CRRs) in rats exposed to hypoglycaemia. Thus, we determined whether continuous NN414 could prevent hypoglycaemia-induced defective counter-regulation. METHODS: Chronically catheterised male Sprague-Dawley rats received a continuous infusion of NN414 into the third ventricle for 8 days after implantation of osmotic minipumps. Counter-regulation was examined by hyperinsulinaemic-hypoglycaemic clamp on day 8 after three episodes of insulin-induced hypoglycaemia (recurrent hypoglycaemia [RH]) on days 5, 6 and 7. In a subset of rats exposed to RH, NN414 infusion was terminated on day 7 to wash out NN414 before examination of counter-regulation on day 8. To determine whether continuous NN414 exposure altered K(ATP) function, we used the hypothalamic glucose-sensing GT1-7 cell line, which expresses the SUR-1-containing K(ATP) channel. RESULTS: Continuous exposure to NN414 in the setting of RH increased, rather than decreased, the glucose infusion rate (GIR), as exemplified by attenuated adrenaline (epinephrine) secretion. Termination of NN414 on day 7 with subsequent washout for 24 h partially diminished the GIR. The same duration of exposure of GT1-7 cells to NN414 substantially reduced K(ATP) conductance, which was also reversed on washout of the agonist. The suppression of K(ATP) current was not associated with reduced channel subunit mRNA or protein levels. CONCLUSIONS/INTERPRETATION: These data indicate that continuous K(ATP) activation results in suppressed CRRs to hypoglycaemia in vivo, which in vitro is associated with the reversible conversion of KATP into a stable inactive state.


Subject(s)
Glucose/metabolism , Hypothalamus/metabolism , KATP Channels/metabolism , Animals , Cell Line , Male , Mice , Rats , Rats, Sprague-Dawley
4.
Trends Endocrinol Metab ; 34(2): 119-130, 2023 02.
Article in English | MEDLINE | ID: mdl-36586779

ABSTRACT

Type 2 diabetes (T2D) is a global health problem characterised by chronic hyperglycaemia due to inadequate insulin secretion. Because glucose must be metabolised to stimulate insulin release it was initially argued that drugs that stimulate glucokinase (the first enzyme in glucose metabolism) would enhance insulin secretion in diabetes. However, in the long term, glucokinase activators have been largely disappointing. Recent studies show it is hyperactivation of glucose metabolism, not glucose itself, that underlies the progressive decline in beta-cell function in diabetes. This perspective discusses if glucokinase activators exacerbate this decline (by promoting glucose metabolism) and, counterintuitively, if glucokinase inhibitors might be a better therapeutic strategy for preserving beta-cell function in T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucokinase/metabolism , Glucokinase/therapeutic use , Insulin/metabolism , Glucose/metabolism , Insulin Secretion
5.
Nat Commun ; 13(1): 6754, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376280

ABSTRACT

Chronic hyperglycaemia causes a dramatic decrease in mitochondrial metabolism and insulin content in pancreatic ß-cells. This underlies the progressive decline in ß-cell function in diabetes. However, the molecular mechanisms by which hyperglycaemia produces these effects remain unresolved. Using isolated islets and INS-1 cells, we show here that one or more glycolytic metabolites downstream of phosphofructokinase and upstream of GAPDH mediates the effects of chronic hyperglycemia. This metabolite stimulates marked upregulation of mTORC1 and concomitant downregulation of AMPK. Increased mTORC1 activity causes inhibition of pyruvate dehydrogenase which reduces pyruvate entry into the tricarboxylic acid cycle and partially accounts for the hyperglycaemia-induced reduction in oxidative phosphorylation and insulin secretion. In addition, hyperglycaemia (or diabetes) dramatically inhibits GAPDH activity, thereby impairing glucose metabolism. Our data also reveal that restricting glucose metabolism during hyperglycaemia prevents these changes and thus may be of therapeutic benefit. In summary, we have identified a pathway by which chronic hyperglycaemia reduces ß-cell function.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Islets of Langerhans , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Glucose/metabolism , Glycolysis/physiology , Insulin/metabolism , Hyperglycemia/metabolism , Pyruvic Acid/metabolism , Islets of Langerhans/metabolism , Diabetes Mellitus/metabolism
6.
Diabetes ; 70(5): 1145-1156, 2021 05.
Article in English | MEDLINE | ID: mdl-33568422

ABSTRACT

The ATP-sensitive K+ (KATP) channel controls blood glucose levels by coupling glucose metabolism to insulin secretion in pancreatic ß-cells. E23K, a common polymorphism in the pore-forming KATP channel subunit (KCNJ11) gene, has been linked to increased risk of type 2 diabetes. Understanding the risk-allele-specific pathogenesis has the potential to improve personalized diabetes treatment, but the underlying mechanism has remained elusive. Using a genetically engineered mouse model, we now show that the K23 variant impairs glucose-induced insulin secretion and increases diabetes risk when combined with a high-fat diet (HFD) and obesity. KATP-channels in ß-cells with two K23 risk alleles (KK) showed decreased ATP inhibition, and the threshold for glucose-stimulated insulin secretion from KK islets was increased. Consequently, the insulin response to glucose and glycemic control was impaired in KK mice fed a standard diet. On an HFD, the effects of the KK genotype were exacerbated, accelerating diet-induced diabetes progression and causing ß-cell failure. We conclude that the K23 variant increases diabetes risk by impairing insulin secretion at threshold glucose levels, thus accelerating loss of ß-cell function in the early stages of diabetes progression.


Subject(s)
Glucose/pharmacology , Insulin/metabolism , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genetic Variation/physiology , Humans , Insulin Secretion/drug effects , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism
7.
Wellcome Open Res ; 5: 15, 2020.
Article in English | MEDLINE | ID: mdl-34368464

ABSTRACT

Background: The K ATP channel plays a key role in glucose homeostasis by coupling metabolically generated changes in ATP to insulin secretion from pancreatic beta-cells.  Gain-of-function mutations in either the pore-forming (Kir6.2) or regulatory (SUR1) subunit of this channel are a common cause of transient neonatal diabetes mellitus (TNDM), in which diabetes presents shortly after birth but remits within the first few years of life, only to return in later life. The reasons behind this time dependence are unclear. Methods: In an attempt to understand the mechanism behind diabetes remission and relapse, we generated mice expressing the common TNDM mutation SUR1-R1183W. We employed Cre/LoxP technology for both inducible and constitutive expression of SUR1-R1183W specifically in mouse beta-cells, followed by investigation of their phenotype using glucose tolerance tests and insulin secretion from isolated islets.  Results: We found that the R1183W mutation impaired inhibition of K ATP channels by ATP when heterologously expressed in human embryonic kidney cells. However, neither induced nor constitutive expression of SUR1-R1183W in mice resulted in changes in blood glucose homeostasis, compared to littermate controls. When challenged with a high fat diet, female mice expressing SUR1-R1183W showed increased weight gain, elevated blood glucose and impaired glycaemic control, but glucose-stimulated insulin secretion from pancreatic islets appeared unchanged. Conclusions: The mouse model of TNDM did not recapitulate the human phenotype. We discuss multiple potential reasons why this might be the case. Based on our findings, we recommend future TNDM mouse models employing a gain-of-function SUR1 mutation should be created using the minimally invasive CRISPR/Cas technology, which avoids many potential pitfalls associated with the Cre/LoxP system.

8.
Mol Metab ; 40: 101015, 2020 10.
Article in English | MEDLINE | ID: mdl-32416313

ABSTRACT

OBJECTIVE: Risk alleles for type 2 diabetes at the STARD10 locus are associated with lowered STARD10 expression in the ß-cell, impaired glucose-induced insulin secretion, and decreased circulating proinsulin:insulin ratios. Although likely to serve as a mediator of intracellular lipid transfer, the identity of the transported lipids and thus the pathways through which STARD10 regulates ß-cell function are not understood. The aim of this study was to identify the lipids transported and affected by STARD10 in the ß-cell and the role of the protein in controlling proinsulin processing and insulin granule biogenesis and maturation. METHODS: We used isolated islets from mice deleted selectively in the ß-cell for Stard10 (ßStard10KO) and performed electron microscopy, pulse-chase, RNA sequencing, and lipidomic analyses. Proteomic analysis of STARD10 binding partners was executed in the INS1 (832/13) cell line. X-ray crystallography followed by molecular docking and lipid overlay assay was performed on purified STARD10 protein. RESULTS: ßStard10KO islets had a sharply altered dense core granule appearance, with a dramatic increase in the number of "rod-like" dense cores. Correspondingly, basal secretion of proinsulin was increased versus wild-type islets. The solution of the crystal structure of STARD10 to 2.3 Å resolution revealed a binding pocket capable of accommodating polyphosphoinositides, and STARD10 was shown to bind to inositides phosphorylated at the 3' position. Lipidomic analysis of ßStard10KO islets demonstrated changes in phosphatidylinositol levels, and the inositol lipid kinase PIP4K2C was identified as a STARD10 binding partner. Also consistent with roles for STARD10 in phosphoinositide signalling, the phosphoinositide-binding proteins Pirt and Synaptotagmin 1 were amongst the differentially expressed genes in ßStard10KO islets. CONCLUSION: Our data indicate that STARD10 binds to, and may transport, phosphatidylinositides, influencing membrane lipid composition, insulin granule biosynthesis, and insulin processing.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Phosphoproteins/metabolism , Alleles , Animals , Carrier Proteins/metabolism , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Female , Insulin/metabolism , Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Lipids/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Docking Simulation , Phosphatidylinositols/metabolism , Phosphoproteins/genetics , Protein Binding , Proteomics , Risk Factors , Secretory Vesicles/metabolism
9.
Cell Metab ; 29(2): 430-442.e4, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30415925

ABSTRACT

Diabetes is a bihormonal disorder resulting from combined insulin and glucagon secretion defects. Mice lacking fumarase (Fh1) in their ß cells (Fh1ßKO mice) develop progressive hyperglycemia and dysregulated glucagon secretion similar to that seen in diabetic patients (too much at high glucose and too little at low glucose). The glucagon secretion defects are corrected by low concentrations of tolbutamide and prevented by the sodium-glucose transport (SGLT) inhibitor phlorizin. These data link hyperglycemia, intracellular Na+ accumulation, and acidification to impaired mitochondrial metabolism, reduced ATP production, and dysregulated glucagon secretion. Protein succination, reflecting reduced activity of fumarase, is observed in α cells from hyperglycemic Fh1ßKO and ß-V59M gain-of-function KATP channel mice, diabetic Goto-Kakizaki rats, and patients with type 2 diabetes. Succination is also observed in renal tubular cells and cardiomyocytes from hyperglycemic Fh1ßKO mice, suggesting that the model can be extended to other SGLT-expressing cells and may explain part of the spectrum of diabetic complications.


Subject(s)
Adenosine Triphosphate/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucagon-Secreting Cells/metabolism , Glucagon/metabolism , Hyperglycemia/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Animals , Cell Line , Glucagon-Secreting Cells/cytology , Humans , Insulin-Secreting Cells/cytology , Male , Mice , Mice, Inbred C57BL , Potassium Channels/metabolism , Rats , Rats, Wistar , Sodium/metabolism
10.
Nat Commun ; 10(1): 2474, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31171772

ABSTRACT

Diabetes is a global health problem caused primarily by the inability of pancreatic ß-cells to secrete adequate levels of insulin. The molecular mechanisms underlying the progressive failure of ß-cells to respond to glucose in type-2 diabetes remain unresolved. Using a combination of transcriptomics and proteomics, we find significant dysregulation of major metabolic pathways in islets of diabetic ßV59M mice, a non-obese, eulipidaemic diabetes model. Multiple genes/proteins involved in glycolysis/gluconeogenesis are upregulated, whereas those involved in oxidative phosphorylation are downregulated. In isolated islets, glucose-induced increases in NADH and ATP are impaired and both oxidative and glycolytic glucose metabolism are reduced. INS-1 ß-cells cultured chronically at high glucose show similar changes in protein expression and reduced glucose-stimulated oxygen consumption: targeted metabolomics reveals impaired metabolism. These data indicate hyperglycaemia induces metabolic changes in ß-cells that markedly reduce mitochondrial metabolism and ATP synthesis. We propose this underlies the progressive failure of ß-cells in diabetes.


Subject(s)
Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 2/genetics , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Gene Expression Profiling , Gluconeogenesis , Glycolysis , Insulin Secretion , Metabolomics , Mice , Mice, Transgenic , NAD/metabolism , Oxidative Phosphorylation , Oxygen Consumption , Potassium Channels, Inwardly Rectifying/genetics , Proteomics
11.
PLoS One ; 13(5): e0197634, 2018.
Article in English | MEDLINE | ID: mdl-29772022

ABSTRACT

Sulphonylurea drugs stimulate insulin secretion from pancreatic ß-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the ß-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it difficult to compare in vitro and in vivo data. We therefore measured the ability of gliclazide and glibenclamide to inhibit KATP channels and stimulate insulin secretion in the presence of serum albumin. We used this data, together with estimates of free drug concentrations from binding studies, to predict the extent of sulphonylurea inhibition of KATP channels at therapeutic concentrations in vivo. KATP currents from mouse pancreatic ß-cells and Xenopus oocytes were measured using the patch-clamp technique. Gliclazide and glibenclamide binding to human plasma were determined in spiked plasma samples using an ultrafiltration-mass spectrometry approach. Bovine serum albumin (60g/l) produced a mild, non-significant reduction of gliclazide block of KATP currents in pancreatic ß-cells and Xenopus oocytes. In contrast, glibenclamide inhibition of recombinant KATP channels was dramatically suppressed by albumin (predicted free drug concentration <0.1%). Insulin secretion was also reduced. Free concentrations of gliclazide and glibenclamide in the presence of human plasma measured in binding experiments were 15% and 0.05%, respectively. Our data suggest the free concentration of glibenclamide in plasma is too low to account for the drug's therapeutic effect. In contrast, the free gliclazide concentration in plasma is high enough to close KATP channels and stimulate insulin secretion.


Subject(s)
Gliclazide/pharmacology , Glyburide/pharmacology , Hypoglycemic Agents/pharmacology , KATP Channels/antagonists & inhibitors , Serum Albumin/pharmacology , Animals , Cattle , Cells, Cultured , Gliclazide/blood , Gliclazide/metabolism , Gliclazide/pharmacokinetics , Glyburide/blood , Glyburide/metabolism , Glyburide/pharmacokinetics , Humans , Hypoglycemic Agents/blood , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacokinetics , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Mice , Mice, Inbred C57BL , Oocytes/drug effects , Oocytes/metabolism , Patch-Clamp Techniques , Protein Binding , Recombinant Proteins/metabolism , Serum Albumin/metabolism , Serum Albumin, Bovine/metabolism , Serum Albumin, Bovine/pharmacology , Xenopus laevis
12.
Mol Metab ; 16: 191-202, 2018 10.
Article in English | MEDLINE | ID: mdl-30093356

ABSTRACT

OBJECTIVE: The metabolic role of d-serine, a non-proteinogenic NMDA receptor co-agonist, is poorly understood. Conversely, inhibition of pancreatic NMDA receptors as well as loss of the d-serine producing enzyme serine racemase have been shown to modulate insulin secretion. Thus, we aim to study the impact of chronic and acute d-serine supplementation on insulin secretion and other parameters of glucose homeostasis. METHODS: We apply MALDI FT-ICR mass spectrometry imaging, NMR based metabolomics, 16s rRNA gene sequencing of gut microbiota in combination with a detailed physiological characterization to unravel the metabolic action of d-serine in mice acutely and chronically treated with 1% d-serine in drinking water in combination with either chow or high fat diet feeding. Moreover, we identify SNPs in SRR, the enzyme converting L-to d-serine and two subunits of the NMDA receptor to associate with insulin secretion in humans, based on the analysis of 2760 non-diabetic Caucasian individuals. RESULTS: We show that chronic elevation of d-serine results in reduced high fat diet intake. In addition, d-serine leads to diet-independent hyperglycemia due to blunted insulin secretion from pancreatic beta cells. Inhibition of alpha 2-adrenergic receptors rapidly restores glycemia and glucose tolerance in d-serine supplemented mice. Moreover, we show that single nucleotide polymorphisms (SNPs) in SRR as well as in individual NMDAR subunits are associated with insulin secretion in humans. CONCLUSION: Thus, we identify a novel role of d-serine in regulating systemic glucose metabolism through modulating insulin secretion.


Subject(s)
Insulin Secretion/drug effects , Serine/pharmacology , Animals , Blood Glucose/metabolism , Body Weight , Diet, High-Fat , Dietary Supplements , Energy Metabolism , Glucose/metabolism , Glucose Intolerance/metabolism , Glucose Tolerance Test , Homeostasis , Hyperglycemia/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Serine/metabolism
14.
Neuropharmacology ; 111: 212-222, 2016 12.
Article in English | MEDLINE | ID: mdl-27618741

ABSTRACT

Individuals with Type 1 diabetes (T1D) are often exposed to recurrent episodes of hypoglycaemia. This reduces hormonal and behavioural responses that normally counteract low glucose in order to maintain glucose homeostasis, with altered responsiveness of glucose sensing hypothalamic neurons implicated. Although the molecular mechanisms are unknown, pharmacological studies implicate hypothalamic ATP-sensitive potassium channel (KATP) activity, with KATP openers (KCOs) amplifying, through cell hyperpolarization, the response to hypoglycaemia. Although initial findings, using acute hypothalamic KCO delivery, in rats were promising, chronic exposure to the KCO NN414 worsened the responses to subsequent hypoglycaemic challenge. To investigate this further we used GT1-7 cells to explore how NN414 affected glucose-sensing behaviour, the metabolic response of cells to hypoglycaemia and KATP activity. GT1-7 cells exposed to 3 or 24 h NN414 exhibited an attenuated hyperpolarization to subsequent hypoglycaemic challenge or NN414, which correlated with diminished KATP activity. The reduced sensitivity to hypoglycaemia was apparent 24 h after NN414 removal, even though intrinsic KATP activity recovered. The NN414-modified glucose responsiveness was not associated with adaptations in glucose uptake, metabolism or oxidation. KATP inactivation by NN414 was prevented by the concurrent presence of tolbutamide, which maintains KATP closure. Single channel recordings indicate that NN414 alters KATP intrinsic gating inducing a stable closed or inactivated state. These data indicate that exposure of hypothalamic glucose sensing cells to chronic NN414 drives a sustained conformational change to KATP, probably by binding to SUR1, that results in loss of channel sensitivity to intrinsic metabolic factors such as MgADP and small molecule agonists.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclic S-Oxides/pharmacology , Glucose/metabolism , Hypoglycemia/metabolism , Hypothalamus/drug effects , KATP Channels/metabolism , Neurons/drug effects , Action Potentials/drug effects , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Cell Line , Cyclic S-Oxides/pharmacokinetics , Glucose/pharmacology , Hypothalamus/metabolism , KATP Channels/agonists , Mice , Neurons/metabolism
15.
Diabetes ; 65(5): 1268-82, 2016 05.
Article in English | MEDLINE | ID: mdl-26861785

ABSTRACT

Encoding acyl-CoA thioesterase-7 (Acot7) is one of ∼60 genes expressed ubiquitously across tissues but relatively silenced, or disallowed, in pancreatic ß-cells. The capacity of ACOT7 to hydrolyze long-chain acyl-CoA esters suggests potential roles in ß-oxidation, lipid biosynthesis, signal transduction, or insulin exocytosis. We explored the physiological relevance of ß-cell-specific Acot7 silencing by re-expressing ACOT7 in these cells. ACOT7 overexpression in clonal MIN6 and INS1(832/13) ß-cells impaired insulin secretion in response to glucose plus fatty acids. Furthermore, in a panel of transgenic mouse lines, we demonstrate that overexpression of mitochondrial ACOT7 selectively in the adult ß-cell reduces glucose tolerance dose dependently and impairs glucose-stimulated insulin secretion. By contrast, depolarization-induced secretion was unaffected, arguing against a direct action on the exocytotic machinery. Acyl-CoA levels, ATP/ADP increases, membrane depolarization, and Ca(2+) fluxes were all markedly reduced in transgenic mouse islets, whereas glucose-induced oxygen consumption was unchanged. Although glucose-induced increases in ATP/ADP ratio were similarly lowered after ACOT7 overexpression in INS1(832/13) cells, changes in mitochondrial membrane potential were unaffected, consistent with an action of Acot7 to increase cellular ATP consumption. Because Acot7 mRNA levels are increased in human islets in type 2 diabetes, inhibition of the enzyme might provide a novel therapeutic strategy.


Subject(s)
Down-Regulation , Fatty Acids, Nonesterified/metabolism , Gene Expression Regulation, Enzymologic , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Palmitoyl-CoA Hydrolase/metabolism , Animals , Calcium Signaling , Cell Line, Tumor , Clone Cells , Female , Glucose Intolerance/enzymology , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Insulin Secretion , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/pathology , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Organ Specificity , Palmitoyl-CoA Hydrolase/genetics , Rats , Recombinant Proteins/metabolism , Sex Characteristics , Tissue Culture Techniques , Up-Regulation
16.
Cell Metab ; 24(3): 389-401, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27452146

ABSTRACT

The arrangement of ß cells within islets of Langerhans is critical for insulin release through the generation of rhythmic activity. A privileged role for individual ß cells in orchestrating these responses has long been suspected, but not directly demonstrated. We show here that the ß cell population in situ is operationally heterogeneous. Mapping of islet functional architecture revealed the presence of hub cells with pacemaker properties, which remain stable over recording periods of 2 to 3 hr. Using a dual optogenetic/photopharmacological strategy, silencing of hubs abolished coordinated islet responses to glucose, whereas specific stimulation restored communication patterns. Hubs were metabolically adapted and targeted by both pro-inflammatory and glucolipotoxic insults to induce widespread ß cell dysfunction. Thus, the islet is wired by hubs, whose failure may contribute to type 2 diabetes mellitus.


Subject(s)
Glucose/pharmacology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Animals , Calcium Signaling/drug effects , Calcium Signaling/radiation effects , Cell Differentiation/drug effects , Computer Systems , Diabetes Mellitus/pathology , Homeostasis/drug effects , Homeostasis/radiation effects , Humans , Insulin/metabolism , Insulin Secretion , Light , Lipids/toxicity , Metabolome/drug effects , Metabolomics , Mice , Optical Phenomena , Phenotype , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL