Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nature ; 620(7972): 72-77, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37168015

ABSTRACT

A recent study demonstrated near-ambient superconductivity in nitrogen-doped lutetium hydride1. This stimulated a worldwide interest in exploring room-temperature superconductivity at low pressures. Here, by using a high-pressure and high-temperature synthesis technique, we have obtained nitrogen-doped lutetium hydride (LuH2±xNy), which has a dark-blue colour and a structure with the space group [Formula: see text] as evidenced by X-ray diffraction. This structure is the same as that reported in ref. 1, with a slight difference in lattice constant. Raman spectroscopy of our samples also showed patterns similar to those observed in ref. 1. Energy-dispersive X-ray spectroscopy confirmed the presence of nitrogen in the samples. We observed a metallic behaviour from 350 K to 2 K at ambient pressure. On applying pressures from 2.1 GPa to 41 GPa, we observed a gradual colour change from dark blue to violet to pink-red. By measuring the resistance at pressures ranging from 0.4 GPa to 40.1 GPa, we observed a progressively improved metallic behaviour; however, superconductivity was not observed above 2 K. Temperature dependence of magnetization at high pressure shows a very weak positive signal between 100 K and 320 K, and the magnetization increases with an increase in magnetic field at 100 K. All of these are not expected for superconductivity above 100 K. Thus, we conclude the absence of near-ambient superconductivity in this nitrogen-doped lutetium hydride at pressures below 40.1 GPa.

2.
Nat Commun ; 14(1): 5927, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37739944

ABSTRACT

Combinatorial optimization problems are prevalent in various fields, but obtaining exact solutions remains challenging due to the combinatorial explosion with increasing problem size. Special-purpose hardware such as Ising machines, particularly memristor-based analog Ising machines, have emerged as promising solutions. However, existing simulate-annealing-based implementations have not fully exploited the inherent parallelism and analog storage/processing features of memristor crossbar arrays. This work proposes a quantum-inspired parallel annealing method that enables full parallelism and improves solution quality, resulting in significant speed and energy improvement when implemented in analog memristor crossbars. We experimentally solved tasks, including unweighted and weighted Max-Cut and traveling salesman problem, using our integrated memristor chip. The quantum-inspired parallel annealing method implemented in memristor-based hardware has demonstrated significant improvements in time- and energy-efficiency compared to previously reported simulated annealing and Ising machine implemented on other technologies. This is because our approach effectively exploits the natural parallelism, analog conductance states, and all-to-all connection provided by memristor technology, promising its potential for solving complex optimization problems with greater efficiency.

3.
Adv Mater ; 35(26): e2301021, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36944139

ABSTRACT

Carbonates (CO3 2- ) have always been known as impurities to degrade the superconductivity in cuprate high-Tc superconductors. Herein, the atomic arrangement of carbonates is directly visualized in (Cu,C)Ba2 Ca3 Cu4 O11+δ via integrated differential phase contrast (iDPC) combined with state-of-the-art scanning transmission electron microscopy. The carbon atoms replace Cu atoms in the charge-reservoir layers, contributing to the formation of carbonates through strong orbital hybridization with the surrounding oxygen atoms. Using first-principles calculations, the spatial configuration of the carbonate groups is confirmed and their influence on the local crystal lattice and electronic states is further investigated. The carbonates not only accommodate distortions by improving the flatness of the outer CuO2 layers but also reduce the density of states at the Fermi level. These two factors play competitive roles to affect the superconductivity. This study provides direct evidence of the presence of CO3 2- groups and gains an insight into the underlying mechanism of superconductivity in oxycarbonate superconductors.

4.
Materials (Basel) ; 15(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35009530

ABSTRACT

China's highway asphalt pavement has entered the stage of major repair, and improving the utilization rate of recycled asphalt pavement (RAP) is the main issue. The key link affecting the performance of recycled asphalt mixtures is the regeneration of aged asphalt, and the effect of the regenerant dosing on the high-temperature performance and viscosity of aged asphalt is the main content to be studied in this research. The aging behavior of asphalt seriously affects the roadworthiness of asphalt mixtures. In this study, we investigated the effect of changes in the microscopic properties of the aged asphalt on its viscosity properties during regeneration using gel permeation chromatography (GPC), Fourier-transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM) as well as Brinell viscosity tests. This study simulated asphalt aging by the RTFOT test, and then we obtained an aged asphalt with a needle penetration of 30. We prepared different regenerated asphalts by adding regeneration agent with doses of 2%, 4%, and 6% to the aged asphalt. The results showed that the regeneration agent could effectively reduce the viscosity of the aged asphalt, which can play a positive role in improving the construction and ease of the aged asphalt. Rejuvenation agents affected the aging asphalt sulfoxide and carbon group indices. Moreover, rejuvenation agents can also significantly reduce the intensities of their characteristic functional group indices. The results of the AFM test showed that the increase in the dose of regeneration agent increased the number of the asphalt bee-like structures and decreased the area of individual bee-like structures. The results of the GPC test were consistent with the results of the AFM test, and the increase in the dose of regeneration agent reduced the asphalt macromolecule content. The viscosity properties and microstructure of the aged asphalt changed positively after the addition of the regeneration agent, indicating that the regeneration agent had a degrading and diluting effect on macromolecules.

5.
J Phys Condens Matter ; 33(26)2021 May 25.
Article in English | MEDLINE | ID: mdl-33902020

ABSTRACT

Recently, superconductivity at about 9-15 K was discovered in Nd1-xSrxNiO2(Nd-112,x≈ 0.125-0.25) infinite-layer thin films, which has stimulated enormous interests in related rare-earth nickelates. Usually, the first step to synthesize this 112 phase is to fabricate theRNiO3(R-113,R: rare-earth element) phase, however, it was reported that the 113 phase is very difficult to be synthesized successfully due to the formation of unusual Ni3+oxidation state. And the difficulty of preparation is enhanced as the ionic radius of rare-earth element decreases. In this work, we report the synthesis and investigation on multiple physical properties of polycrystalline perovskites Sm1-xSrxNiO3(x= 0, 0.2) in which the ionic radius of Sm3+is smaller than that of Pr3+and Nd3+in related superconducting thin films. The structural and compositional analyses conducted by x-ray diffraction and energy dispersive x-ray spectrum reveal that the samples mainly contain the perovskite phase of Sm1-xSrxNiO3with small amount of NiO impurities. Magnetization and resistivity measurements indicate that the parent phase SmNiO3undergoes a paramagnetic-antiferromagnetic transition at about 224 K on a global insulating background. In contrast, the Sr-doped sample Sm0.8Sr0.2NiO3shows a metallic behavior from 300 K down to about 12 K, while below 12 K the resistivity exhibits a slight logarithmic increase. Meanwhile, from the magnetization curves, we can see that a possible spin-glass state occurs below 12 K in Sm0.8Sr0.2NiO3. Using a soft chemical reduction method, we also obtain the infinite-layer phase Sm0.8Sr0.2NiO2with square NiO2planes. The compound shows an insulating behavior which can be described by the three-dimensional variable-range-hopping model. And superconductivity is still absent in the polycrystalline Sm0.8Sr0.2NiO2.

6.
Sci Adv ; 4(9): eaau0192, 2018 09.
Article in English | MEDLINE | ID: mdl-30276265

ABSTRACT

One of the key factors that limit the high-power applications for a type II superconductor is the irreversibility line H irr(T), which reflects the very boundary of resistive dissipation in the phase diagram of magnetic field versus temperature. In cuprate family, the Y-, Bi-, Hg-, and Tl-based systems have superconducting transition temperatures exceeding the liquid nitrogen boiling temperature (~77 K). However, the toxic elements Hg and Tl in the latter two systems strongly constrain the applications. The best perspective so far is relying on the YBa2Cu3O7-δ (T c ≈ 90 K) system, which is nontoxic and has a relatively high irreversibility magnetic field. We report the study of a nontoxic superconductor (Cu,C)Ba2Ca3Cu4O11+δ with T c = 116 K. We found that the irreversibility magnetic field is extremely high, and it thus provides great potential for applications above the liquid nitrogen temperature.

SELECTION OF CITATIONS
SEARCH DETAIL