Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Cell Mol Life Sci ; 79(5): 224, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35389112

ABSTRACT

BACKGROUND: Hematoma leads to progressive neurological deficits and poor outcomes after intracerebral hemorrhage (ICH). Early clearance of hematoma is widely recognized as an essential treatment to limit the damage and improve the clinical prognosis. CD163, alias hemoglobin (Hb) scavenger receptor on microglia, plays a pivotal role in hematoma absorption, but CD163 on neurons permits Hb uptake and results in neurotoxicity. In this study, we focus on how to specially promote microglial but not neuronal CD163 mediated-Hb uptake and hematoma absorption. METHODS: RNA sequencing was used to explore the potential molecules involved in ICH progression, and hematoma was detected by magnetic resonance imaging (MRI). Western blot and immunofluorescence were used to evaluate the expression and location of fractalkine (FKN) after ICH. Erythrophagocytosis assay was performed to study the specific mechanism of action of FKN in hematoma clearance. Small interfering RNA (siRNA) transfection was used to explore the effect of peroxisome proliferator-activated receptor-γ (PPAR-γ) on hematoma absorption. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum FKN concentration in ICH patients. RESULTS: FKN was found to be significantly increased around the hematoma in a mouse model after ICH. With its unique receptor CX3CR1 in microglia, FKN significantly decreased the hematoma size and Hb content, and improved neurological deficits in vivo. Further, FKN could enhance erythrophagocytosis of microglia in vitro via the CD163/ hemeoxygenase-1 (HO-1) axis, while AZD8797 (a specific CX3CR1 inhibitor) reversed this effect. Moreover, PPAR-γ was found to mediate the increase in the CD163/HO-1 axis expression and erythrophagocytosis induced by FKN in microglia. Of note, a higher serum FKN level was found to be associated with better hematoma resolution in ICH patients. CONCLUSIONS: We systematically identified that FKN may be a potential therapeutic target to improve hematoma absorption and we shed light on ICH treatment.


Subject(s)
Chemokine CX3CL1 , Microglia , Animals , Antigens, CD , Antigens, Differentiation, Myelomonocytic , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Chemokine CX3CL1/metabolism , Hematoma/drug therapy , Hematoma/metabolism , Humans , Mice , Microglia/metabolism , Neurons/metabolism , PPAR gamma/metabolism , Receptors, Cell Surface
2.
FASEB J ; 33(4): 4947-4961, 2019 04.
Article in English | MEDLINE | ID: mdl-30653356

ABSTRACT

Angiogenesis is a crucial defense response to hypoxia that regulates the process of raising the promise of long-term neurologic recovery during the management of stroke. A high expression of antiangiogenic factors leads to the loss of neovascularization capacity in pathologic conditions. We have previously documented an impairment of the cerebral vessel perfusion and neovascularization in the cortex neighboring the stroke-induced lesion, which was accompanied by an activation of semaphorin 3E (Sema3E)/PlexinD1 after ischemic stroke. In this study, we employed micro-optical sectioning tomography to fully investigate the details of the vascular pattern, including the capillaries. We found that after transient middle cerebral artery occlusion, inhibiting PlexinD1 signaling led to an organized recovery of the vascular network in the ischemic area. We then further explored the possible mechanisms. In vivo, Sema3E substantially decreased dynamic delta-like 4 (DLL4) expression. In cultured brain microvascular endothelial cells, Sema3E down-regulated DLL4 expression via inhibiting Ras-related C3 botulinum toxin substrate 1-induced JNK phosphorylation. At the microcosmic level, Sema3E/PlexinD1 signaling promoted F-actin disassembly and focal adhesion reduction by activating the small guanosine triphosphatase Ras homolog family member J by releasing RhoGEF Tuba from direct binding to PlexinD1, thus mediating endothelial cell motility and filopodia retraction. Our study reveals that Sema3E/PlexinD1 signaling, which suppressed endothelial DLL4 expression, cell motility, and filopodia formation, is expected to be a novel druggable target for angiogenesis during poststroke progression.-Zhou, Y.-F., Chen, A.-Q., Wu, J.-H., Mao, L., Xia, Y.-P., Jin, H.-J., He, Q.-W., Miao, Q. R., Yue, Z.-Y., Liu, X.-L., Huang, M., Li, Y.-N., Hu, B. Sema3E/PlexinD1 signaling inhibits postischemic angiogenesis by regulating endothelial DLL4 and filopodia formation in a rat model of ischemic stroke.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Pseudopodia/metabolism , Receptors, Cell Surface/metabolism , Semaphorins/metabolism , Animals , Blotting, Western , Brain/metabolism , Brain/pathology , Brain Ischemia/genetics , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cells, Cultured , Endothelial Cells/metabolism , Fluorescent Antibody Technique , Immunoprecipitation , Intracellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Pheochromocytoma/metabolism , Pheochromocytoma/pathology , Pseudopodia/genetics , Rats , Rats, Sprague-Dawley , Receptors, Cell Surface/genetics , Semaphorins/genetics , Stroke/genetics , Stroke/metabolism , Stroke/pathology
3.
FASEB J ; 32(4): 2181-2196, 2018 04.
Article in English | MEDLINE | ID: mdl-29242274

ABSTRACT

The inflammatory process in stroke is the major contributor to blood-brain barrier (BBB) breakdown. Previous studies indicated that semaphorin 4D (Sema4D), an axon guidance molecule, initiated inflammatory microglial activation and disrupted endothelial function in the CNS. However, whether Sema4D disrupts BBB integrity after stroke remains unclear. To study the effect of Sema4D on BBB disruption in stroke, rats were subjected to transient middle cerebral artery occlusion and targeted injection of lentivirus-mediated clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene disruption of PlexinB1. We found that Sema4D synchronously increased with BBB permeability and accumulated in the perivascular area after stroke. Suppressing Sema4D/PlexinB1 signaling in the periinfarct cortex significantly decreased BBB permeability as detected by MRI and fibrin deposition, and thereby improved stroke outcome. In vitro, we confirmed that Sema4D disrupted BBB integrity and endothelial tight junctions. Moreover, we found that Sema4D induced pericytes to acquire a CD11b-positive phenotype and express proinflammatory cytokines. In addition, Sema4D inhibited AUF1-induced proinflammatory mRNA decay effect. Taken together, our data provides evidence that Sema4D disrupts BBB integrity and promotes an inflammatory response by binding to PlexinB1 in pericytes after transient middle cerebral artery occlusion. Our study indicates that Sema4D may be a novel therapeutic target for treatment in the acute phase of stroke.-Zhou, Y.-F., Li, Y.-N., Jin, H.-J., Wu, J.-H., He, Q.-W., Wang, X.-X., Lei, H., Hu, B. Sema4D/PlexinB1 inhibition ameliorates blood-brain barrier damage and improves outcome after stroke in rats.


Subject(s)
Blood-Brain Barrier/metabolism , GTPase-Activating Proteins/genetics , Genetic Therapy/methods , Infarction, Middle Cerebral Artery/therapy , Receptors, Cell Surface/genetics , Animals , Blood-Brain Barrier/cytology , CD11b Antigen/genetics , CD11b Antigen/metabolism , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Fibrin/genetics , Fibrin/metabolism , GTPase-Activating Proteins/metabolism , Lentivirus/genetics , Male , Pericytes/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Cell Surface/metabolism
4.
FASEB J ; 32(2): 935-944, 2018 02.
Article in English | MEDLINE | ID: mdl-29070584

ABSTRACT

Blood-brain barrier (BBB) disruption plays a critical role in brain injury induced by cerebral ischemia, and preserving BBB integrity during ischemia could alleviate cerebral injury. We examined the role of miR-130a in ischemic BBB disruption by using models of rat middle cerebral artery occlusion and cell oxygen-glucose deprivation. We found that ischemia significantly increased microRNA-130a (miR-130a) level and that miR-130a was predominantly from brain microvascular endothelial cells. Antagomir-130a, an antagonist of miR-130a, could attenuate brain edema, lower BBB permeability, reduce infarct volume, and improve neurologic function. MiR-130a overexpression induced by miR-130a mimic increased monolayer permeability, and intercellular inhibition of miR-130a by a miR-130a inhibitor suppressed oxygen-glucose deprivation-induced increase in monolayer permeability. Moreover, dual luciferase reporter system showed that Homeobox A5 was the direct target of miR-130a. MiR-130a, by inhibiting Homeobox A5 expression, could down-regulate occludin, thereby increasing BBB permeability. Our results suggested that miR-130a might be implicated in ischemia-induced BBB dysfunction and serve as a target for the treatment of ischemic stroke.-Wang, Y., Wang, M.-D., Xia, Y.-P., Gao, Y., Zhu, Y.-Y., Chen, S.-C., Mao, L., He, Q.-W., Yue, Z.-Y., Hu, B. MicroRNA-130a regulates cerebral ischemia-induced blood-brain barrier permeability by targeting Homeobox A5.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Ischemia/metabolism , Homeodomain Proteins/metabolism , MicroRNAs/metabolism , Occludin/biosynthesis , Animals , Blood-Brain Barrier/pathology , Brain Ischemia/genetics , Brain Ischemia/pathology , Homeodomain Proteins/genetics , Male , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Occludin/genetics , Oligonucleotides/pharmacology , Permeability , Rats , Rats, Sprague-Dawley
5.
FASEB J ; 32(6): 3133-3148, 2018 06.
Article in English | MEDLINE | ID: mdl-29401609

ABSTRACT

Blood-brain barrier (BBB) disruption caused by reperfusion injury after ischemic stroke is an intractable event conducive to further injury. Brain pericytes play a vital role in maintaining BBB integrity by interacting with other components of the BBB. In this study, we found that sphingosine-1-phosphate receptor (S1PR)2 expressed in pericytes was significantly up-regulated after ischemia in vivo and in vitro. By using a S1PR2 antagonist (JTE-013), we showed that S1PR2 plays a critical role in the induction of BBB permeability of transient middle cerebral artery occlusion (tMCAO) rats and the in vitro BBB model. Furthermore, we discovered that S1PR2 may decrease N-cadherin expression and increase pericyte migration via NF-κB p65 signal and found that S1PR2 could be regulated by miR-149-5p negatively, which was decreased in the ischemic boundary zone and cultured pericytes after ischemia. Overexpression of miR-149-5p in cultured pericytes substantially increased N-cadherin expression and decreased pericyte migration, which decreased BBB leakage in the in vitro model. Up-regulating miR-149-5p by intracerebroventricular injection of agomir-149-5p attenuated BBB permeability and improved the outcomes of tMCAO rats significantly. Thus, our data suggest that miR-149-5p may serve as a potential target for treatment of BBB disruption after ischemic stroke.-Wan, Y., Jin, H.-J., Zhu, Y.-Y., Fang, Z., Mao, L., He, Q., Xia, Y.-P., Li, M., Li, Y., Chen, X., Hu, B. MicroRNA-149-5p regulates blood-brain barrier permeability after transient middle cerebral artery occlusion in rats by targeting S1PR2 of pericytes.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Ischemia/metabolism , Capillary Permeability , MicroRNAs/metabolism , Pericytes/metabolism , Receptors, Lysosphingolipid/metabolism , Stroke/metabolism , Animals , Blood-Brain Barrier/pathology , Brain Ischemia/genetics , Brain Ischemia/pathology , Cell Movement/genetics , Disease Models, Animal , Infarction, Middle Cerebral Artery , Male , MicroRNAs/genetics , Pericytes/pathology , Rats , Rats, Sprague-Dawley , Receptors, Lysosphingolipid/genetics , Signal Transduction/genetics , Sphingosine-1-Phosphate Receptors , Stroke/genetics , Stroke/pathology , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
6.
Trop Med Int Health ; 23(11): 1200-1206, 2018 11.
Article in English | MEDLINE | ID: mdl-30178470

ABSTRACT

OBJECTIVES: A good mastery of stroke-related knowledge can be of great benefit in developing healthy behaviours. This study surveyed the knowledge about stroke and influencing factors among patients with acute ischaemic stroke (AIS) at discharge in a Chinese province. METHODS: A cross-section study was conducted from November 1, 2014 to January 31, 2015. A total of 1531 AIS patients in Hubei Province completed a questionnaire at discharge. Multivariate linear regression was used to identify the influencing factors of their knowledge of stroke. RESULTS: About 31.2% of the respondents did not know that stroke is caused by blockage or rupture of cerebral blood vessels and 20.3% did not realise they need immediate medical attention after onset. Approximately 50% did not know that sudden blurred vision, dizziness, headache and unconsciousness are the warning signs of stroke. Over 40% were not aware of the risk factors of the condition, such as hypertension, hyperlipidaemia, diabetes mellitus, smoking and obesity. Over 20% had no idea that they need long-term medication and strict control of blood pressure, blood lipids and blood sugar. Their knowledge levels were correlated with regions of residence (P < 0.0001), socioeconomic status (P < 0.05), physical condition (P < 0.01), previous stroke (P < 0.0001) and family members and friends having had a stroke (P < 0.01). CONCLUSIONS: Most AIS patients in Hubei Province, China, had little knowledge of stroke at discharge. Further efforts should be devoted to strengthening the in-hospital education of stroke patients, especially those with a low income and those from rural areas.


Subject(s)
Health Knowledge, Attitudes, Practice , Health Literacy/statistics & numerical data , Patient Discharge , Stroke/physiopathology , Adult , Aged , Aged, 80 and over , China , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Risk Factors , Surveys and Questionnaires
7.
Arterioscler Thromb Vasc Biol ; 37(3): 515-524, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28062501

ABSTRACT

OBJECTIVE: P2Y12 is a well-recognized receptor expressed on platelets and the target of thienopyridine-type antiplatelet drugs. However, recent evidence suggests that P2Y12 expressed in vessel wall plays a role in atherogenesis, but the mechanisms remain elusive. In this study, we examined the molecular mechanisms of how vessel wall P2Y12 mediates vascular smooth muscle cells (VSMCs) migration and promotes the progression of atherosclerosis. APPROACH AND RESULTS: Using a high-fat diet-fed apolipoprotein E-deficient mice model, we found that the expression of P2Y12 in VSMCs increased in a time-dependent manner and had a linear relationship with the plaque area. Moreover, administration of P2Y12 receptor antagonist for 12 weeks caused significant reduction in atheroma and decreased the abundance of VSMCs in plaque. In cultured VSMCs, we found that activation of P2Y12 receptor inhibited cAMP/protein kinase A signaling pathway, which induced cofilin dephosphorylation and filamentous actin disassembly, thereby enhancing VSMCs motility and migration. In addition, the number of P2Y12-positive VSMCs was decreased in the carotid artery plaque from patients receiving clopidogrel. CONCLUSIONS: Vessel wall P2Y12 receptor, which promotes VSMCs migration through cofilin dephosphorylation, plays a critical role in the development of atherosclerotic lesion and may be used as a therapeutic target for atherosclerosis.


Subject(s)
Aortic Diseases/metabolism , Atherosclerosis/metabolism , Cell Movement , Cofilin 2/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Receptors, Purinergic P2Y12/metabolism , Actin Cytoskeleton/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/pathology , Aortic Diseases/prevention & control , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Cell Movement/drug effects , Cells, Cultured , Clopidogrel , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Genetic Predisposition to Disease , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Phenotype , Phosphorylation , Plaque, Atherosclerotic , Purinergic P2Y Receptor Antagonists/therapeutic use , RNA Interference , Receptors, Purinergic P2Y12/drug effects , Receptors, Purinergic P2Y12/genetics , Signal Transduction , Ticlopidine/analogs & derivatives , Ticlopidine/therapeutic use , Time Factors , Transfection
8.
Int J Neurosci ; 128(1): 79-89, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28726570

ABSTRACT

Reperfusion therapy contributes to better clinical outcomes in patients with acute ischemic stroke but carries a more significant risk of hemorrhagic transformation (HT) compared to supportive care. Once HT occurs, the outcome is usually poor and this causes a dilemma in the treatment of ischemic stroke. Consequently, early prediction of HT would be extremely helpful for guiding precise treatment of ischemic stroke. In this review, we focus on summarizing biomarkers of HT and elucidating possible mechanisms so as to identify potential biomarkers for predicting HT.


Subject(s)
Biomarkers/blood , Brain Ischemia/complications , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/etiology , Stroke/complications , Humans
9.
Biochem Biophys Res Commun ; 485(1): 167-173, 2017 03 25.
Article in English | MEDLINE | ID: mdl-28202414

ABSTRACT

Emerging studies have illustrated that LncRNAs TUG1 play critical roles in multiple biologic processes. However, the LncRNA TUG1 expression and function in ischemic stroke have not been reported yet. In this study, we found that LncRNA TUG1 expression was significantly up-regulated in brain ischemic penumbra from rat middle carotid artery occlusion (MCAO) model, while similar results were also observed in cultured neurons under oxygen-glucose deprivation (OGD) insult. Knockdown of TUG1 decreased the ratio of apoptotic cells and promoted cells survival in vitro, which may be regulated by the elevated miRNA-9 expression and decreased Bcl2l11 protein. Furthermore, TUG1 could directly interact with miR-9 and down-regulating miR-9 could efficiently reverse the function of TUG1 on the Bcl2l11 expression. In summary, our result sheds light on the role of LncRNA TUG1 as a miRNA sponge for ischemic stroke, possibly providing a new therapeutic target in stroke.


Subject(s)
Apoptosis , Bcl-2-Like Protein 11/genetics , Brain Ischemia/genetics , Brain/pathology , Gene Expression Regulation , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Animals , Brain/metabolism , Brain Ischemia/pathology , Cells, Cultured , Gene Knockdown Techniques , Male , Neurons/metabolism , Neurons/pathology , Rats, Sprague-Dawley , Up-Regulation
10.
FASEB J ; 30(6): 2097-107, 2016 06.
Article in English | MEDLINE | ID: mdl-26887441

ABSTRACT

The mechanism of blood-brain barrier (BBB) disruption, involved in poststroke edema and hemorrhagic transformation, is important but elusive. We investigated microRNA-150 (miR-150)-mediated mechanism in the disruption of BBB after stroke in rats. We found that up-regulation of miR-150 increased permeability of BBB as detected by MRI after permanent middle cerebral artery occlusion in vivo as well as increased permeability of brain microvascular endothelial cells after oxygen-glucose deprivation in vitro. The expression of claudin-5, a key tight junction protein, was decreased in the ischemic boundary zone after up-regulation of miR-150. We found in brain microvascular endothelial cells that overexpression of miR-150 decreased not only cell survival rate but also the expression levels of claudin-5 after oxygen-glucose deprivation. With dual-luciferase assay, we confirmed that miR-150 could directly regulate the angiopoietin receptor Tie-2. Moreover, silencing Tie-2 with lentivirus-delivered small interfering RNA reversed the effect of miR-150 on endothelial permeability, cell survival, and claudin-5 expression. Furthermore, poststroke treatment with antagomir-150, a specific miR-150 antagonist, contributed to BBB protection, infarct volume reduction, and amelioration of neurologic deficits. Collectively, our findings suggested that miR-150 could regulate claudin-5 expression and endothelial cell survival by targeting Tie-2, thus affecting the permeability of BBB after permanent middle cerebral artery occlusion in rats, and that miR-150 might be a potential alternative target for the treatment of stroke.-Fang, Z., He, Q.-W., Li, Q., Chen, X.-L., Baral, S., Jin, H.-J., Zhu, Y.-Y., Li, M., Xia, Y.-P., Mao, L., Hu, B. MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats.


Subject(s)
Blood-Brain Barrier/physiology , Infarction, Middle Cerebral Artery/metabolism , MicroRNAs/metabolism , Receptor, TIE-2/metabolism , Animals , Claudin-5/genetics , Claudin-5/metabolism , Endothelial Cells/physiology , MicroRNAs/genetics , Middle Cerebral Artery/pathology , Permeability , Rats , Receptor, TIE-2/genetics , Up-Regulation
11.
J Huazhong Univ Sci Technolog Med Sci ; 35(2): 147-156, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25877345

ABSTRACT

Several studies have investigated the association between CYP2C19 polymorphism and clinical outcomes of patients treated with clopidogrel, but few have noticed the difference in association between Westerners and Asians. We searched MEDLINE, EMBASE and Cochrane Library database and conducted a systematic review and meta-analysis. Thirty-six studies involving 44 655 patients with coronary artery disease (CAD) treated with clopidogrel were included, of which more than 68% had undergone percutaneous coronary intervention (PCI). The primary outcome of our interest was the recurrence of major adverse cardiovascular events (MACE) in those CAD patients. Firstly, we found that the distribution of reduced-function CYP2C19 allele varied between Westerners and Asians. Among Asians, 1 and 2 reduced-function CYP2C19 mutant allele carriers accounted for 42.5% and 10%, respectively. While among Westerners, 1 and 2 reduced-function CYP2C19 mutant allele carriers accounted for 25.5% and 2.4%, respectively. Secondly, the impact of CYP2C19 polymorphism on clinical outcomes of patients treated with clopidogrel varied with races. Among Asians, only 2 reduced-function CYP2C19 mutant allele carriers had the reduced effect of clopidogrel. And the reduced effect was significant only after the 30th day of treatment. While among Westerners, both 1 and 2 reduced-function CYP2C19 allele carriers had the reduced effect, and it mainly occurred within the first 30 days. Thirdly, the safety of clopidogrel was almost the same among races. Reduced-function allele non-carriers had higher risk for total bleeding but did not have higher risk for major bleeding. It is suggested that CYP2C19 polymorphism affects the efficacy of clopidogrel differently among Westerners and Asians.


Subject(s)
Cytochrome P-450 CYP2C19/genetics , Platelet Aggregation Inhibitors/therapeutic use , Polymorphism, Genetic , Racial Groups , Ticlopidine/analogs & derivatives , Clopidogrel , Gene Frequency , Humans , Ticlopidine/therapeutic use , Treatment Outcome
12.
Brain Sci ; 14(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928613

ABSTRACT

Intracerebral hemorrhage (ICH) is the cerebrovascular disease with the highest disability and mortality rates, causing severe damage to the health of patients and imposing a significant socioeconomic burden. Aging stands as a foremost risk factor for ICH, with a significant escalation in ICH incidence within the elderly demographic, highlighting a close association between ICH and aging. In recent years, with the acceleration of the "aging society" trend, exploring the intricate relationship between aging and ICH has become increasingly urgent and worthy of in-depth attention. We have summarized the characteristics of ICH in the elderly, reviewing how aging influences the onset and development of ICH by examining its etiology and the mechanisms of damage via ICH. Additionally, we explored the potential impacts of ICH on accelerated aging, including its effects on cognitive abilities, quality of life, and lifespan. This review aims to reveal the connection between aging and ICH, providing new ideas and insights for future ICH research.

13.
Article in English | MEDLINE | ID: mdl-38465433

ABSTRACT

INTRODUCTION: Lenvatinib resistance causes less than 40% of the objective response rate. Therefore, it is urgent to explore new therapeutic targets to reverse the lenvatinib resistance for HCC. HAND2-AS1 is a critical tumor suppressor gene in various cancers. METHODS: Here, we investigated the role of HAND2-AS1 in the molecular mechanism of lenvatinib resistance in HCC. It was found that HAND2-AS1 was lowly expressed in the HepG2 lenvatinib resistance (HepG2-LR) cells and HCC tissues and associated with progression-free intervals via TCGA. Overexpression of HAND2-AS1 (OE-HAND2-AS1) decreased the IC50 of lenvatinib in HepG2-LR cells to reverse lenvatinib resistance. Moreover, OE-HAND2-AS1 induced intracellular concentrations of malondialdehyde (MDA) and lipid ROS and decreased the ratio of glutathione to glutathione disulfide (GSH/GSSG) to promote ferroptosis. RESULTS: A xenograft model in which nude mice were injected with OE-HAND2-AS1 HepG2-LR cells confirmed that OE-HAND2-AS1 could reverse lenvatinib resistance and decrease tumor formation in vivo. HAND2-AS1 promoted the expression of ferroptosis-related genes (TLR4, NOX2, and DUOX2) and promoted ferroptosis to reverse lenvatinib resistance by increasing TLR4/ NOX2/DUOX2 via competing endogenous miR-219a-1-3p in HCC cells. Besides, patients with a low HAND2-AS1 level had early recurrence after resection. CONCLUSION: These findings suggested that HAND2-AS1 may be a potential therapeutic target and an indicator of early recurrence for HCC.

14.
Clin Transl Gastroenterol ; 15(2): e00662, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38099588

ABSTRACT

INTRODUCTION: Liver fibrosis results from chronic liver injury and inflammation, often leading to cirrhosis, liver failure, portal hypertension, and hepatocellular carcinoma. Progress has been made in understanding the molecular mechanisms underlying hepatic fibrosis; however, translating this knowledge into effective therapies for disease regression remains a challenge, with considerably few interventions having entered clinical validation. The roles of exosomes during fibrogenesis and their potential as a therapeutic approach for reversing fibrosis have gained significant interest. This study aimed to investigate the association between microRNAs (miRNAs) derived from serum exosomes and liver fibrosis and to evaluate the effect of serum exosomes on fibrogenesis and fibrosis reversal, while identifying the underlying mechanism. METHODS: Using serum samples collected from healthy adults and paired histologic patients with advanced fibrosis or cirrhosis, we extracted human serum exosomes by ultrahigh-speed centrifugation. Transcriptomic analysis was conducted to identify dysregulated exosome-derived miRNAs. Liver fibrosis-related molecules were determined by qRT-PCR, Western blot, Masson staining, and immunohistochemical staining. In addition, we analyzed the importance of serum exosome-derived miRNA expression levels in 42 patients with advanced fibrosis or cirrhosis. RESULTS: Exosome-derived miR-193a-5p and miR-381-3p were associated with fibrogenesis, as determined by transcriptomic screening. Compared with healthy control group, the high expression of serum exosome-derived miR-193a-5p and miR-381-3 in chronic hepatitis B (n = 42) was closely associated with advanced liver fibrosis and cirrhosis. In vitro , exosome-derived miRNA-193a-5p and miR-381-3p upregulated the expression of α-smooth muscle actin, collagen 1a1, and tissue inhibitors of metalloproteinase 1 in the human hepatic stellate cell line at both mRNA and protein levels. DISCUSSION: Serum exosome-derived miR-193a-5p and miR-381-3p regulated the adenosine 5'-monophosphate-activated protein kinase/transforming growth factor beta/Smad2/3 signaling pathway and promoted fibrogenesis.


Subject(s)
Exosomes , MicroRNAs , Adult , Humans , Protein Kinases/metabolism , Protein Kinases/pharmacology , Exosomes/genetics , Exosomes/metabolism , Exosomes/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Liver Cirrhosis/pathology , Transforming Growth Factor beta/metabolism , Adenosine/metabolism , Adenosine/pharmacology
15.
Brain Res Bull ; 199: 110667, 2023 07.
Article in English | MEDLINE | ID: mdl-37192717

ABSTRACT

The complement system is crucial to the innate immune system. It has the function of destroying pathogens by activating the classical, alternative, and lectin pathways. The complement system is important in nervous system diseases such as cerebrovascular and neurodegenerative diseases. Activation of the complement system involves a series of intercellular signaling and cascade reactions. However, research on the source and transport mechanisms of the complement system in neurological diseases is still in its infancy. Studies have increasingly found that extracellular vesicles (EVs), a classic intercellular communication paradigm, may play a role in complement signaling disorders. Here, we systematically review the EV-mediated activation of complement pathways in different neurological diseases. We also discuss the prospect of EVs as future immunotherapy targets.


Subject(s)
Extracellular Vesicles , Neurodegenerative Diseases , Humans , Extracellular Vesicles/metabolism , Complement System Proteins/metabolism , Neurodegenerative Diseases/metabolism , Cell Communication , Signal Transduction
16.
CNS Neurosci Ther ; 29(4): 979-987, 2023 04.
Article in English | MEDLINE | ID: mdl-36448225

ABSTRACT

INTRODUCTION: Admission hyperglycemia is a common finding after spontaneous intracerebral hemorrhage (ICH) secondary to pre-existing diabetes mellitus (DM) or stress-induced hyperglycemia (SIH). Studies of the causal relationship between SIH and ICH outcomes are rare. AIM: We aimed to identify whether SIH or pre-existing DM was the cause of admission hyperglycemia associated with ICH outcomes. METHODS: Admission glycosylated hemoglobin (HbA1c), glucose levels, and comorbidity data from the prospective, multicenter cohort, Chinese Cerebral Hemorrhage: Mechanisms and Intervention Study (CHEERY), were collected and analyzed. According to different admission blood glucose and HbA1c levels, patients were divided into nondiabetic normoglycemia (NDN), diabetic normoglycemia (DN), diabetic hyperglycemia (DH), and SIH groups. Modified Poisson regression models were used to analyze ICH outcomes in the different groups. RESULTS: In total, 1372 patients were included: 388 patients with admission hyperglycemia, 239 with DH, and 149 with SIH. In patients with hyperglycemia, SIH was associated with a higher risk of pulmonary infection [risk ratios (RR): 1.477, 95% confidence interval (CI): 1.004-2.172], 30-day (RR: 1.068, 95% CI: 1.009-1.130) and 90-day mortality after ICH (RR: 1.060, 95% CI: 1.000-1.124). CONCLUSIONS: Admission hyperglycemia is a common finding after ICH, and SIH is a sensitive predictor of the risk of pulmonary infection and all-cause death after ICH.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Humans , Glycated Hemoglobin , Prospective Studies , Stress, Physiological , Diabetes Mellitus/epidemiology , Hyperglycemia/complications , Hyperglycemia/epidemiology , Blood Glucose , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/epidemiology , Prognosis
17.
Brain Behav ; 13(12): e3326, 2023 12.
Article in English | MEDLINE | ID: mdl-38054663

ABSTRACT

PURPOSE: The purpose of this study was to test the hypothesis that brain white matter hyperintensities (WMH) are more common in patients receiving epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) and identify clinical risk factors associated with WMH. EXPERIMENTAL DESIGN: This multiple-center, prospective cohort study was conducted from March 2017 to July 2020. Two groups of patients with non-small cell lung cancer (NSCLC) who received or did not receive EGFR-TKI were included and followed up for more than 24 months. The progression of WMH was defined as an increase of ≥1 point on the Fazekas visual rating scale between the baseline and at the 2-year follow-up. A modified Poisson regression model was performed to evaluate risk factors on increased WMH load. RESULTS: Among 286 patients with NSCLC, 194 (68%) patients with NSCLC who received EGFR-TKI and 92 (32%) patients with NSCLC without EGFR-TKI treatment were analyzed. Modified Poisson regression analysis showed that EGFR-TKI treatment was independently associated with the WMH progression (EGFR-TKI: aRR 2.72, 95% confidence interval [CI] 1.46-5.06, p = .002). Interleukin (IL)-2, IL-4, and IL-10 were associated with increased WMH in the adjusted model (IL-2: aRR 1.55 [95% CI 1.06-2.25], p = .023; IL-4: aRR 1.66 [95% CI 1.13-2.43], p = .010; IL-10: aRR 1.48 [95% CI 1.06-2.06], p = .020). CONCLUSION: Patients with NSCLC who received EGFR-TKI may be at higher risk of developing WMH or worsening of WMH burden. The impact of increased WMH lesions in these patients is to be further assessed. IL-2, IL-4, and IL-10 may be used as potential biomarkers to monitor the risk of increased WMH burden.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , White Matter , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Interleukin-2 , Interleukin-10 , Prospective Studies , Interleukin-4/therapeutic use , White Matter/diagnostic imaging , White Matter/pathology , Protein Kinase Inhibitors/adverse effects , ErbB Receptors/genetics , ErbB Receptors/therapeutic use , Mutation , Retrospective Studies
18.
Stroke Vasc Neurol ; 8(2): 111-118, 2023 04.
Article in English | MEDLINE | ID: mdl-36137597

ABSTRACT

BACKGROUND: Intracerebral haemorrhage (ICH) is the most devastating form of stroke causing high morbidity and mortality. We aimed to develop a novel clinical score incorporating multisystem markers to predict functional dependence at 90 days after ICH. METHODS: We analysed data from Chinese Cerebral Hemorrhage: Mechanism and Intervention study. Multivariable logistic regression analysis was used to identify the factors associated with 90-day functional dependency (the modified Rankin Scale ≥3) after ICH and develop the ADVISING scoring system. To test the scoring system, a total of 2111 patients from Hubei province were included as the training cohort, and 733 patients from other three provinces in China were included as an external validation cohort. RESULTS: We found nine variables to be significantly associated with functional dependency and included in the ADVISING score system: age, deep location of haematoma, volume of haematoma, National Institutes of Health Stroke Scale, aspartate transaminase, international normalised ratio, neutrophil-lymphocyte ratio, fasting blood glucose and glomerular filtration rate. Individuals were divided into 12 different categories by using these nine potential predictors. The proportion of patients who were functionally dependent increased with higher ADVISING scores, which showed good discrimination and calibration in both the training cohort (C-statistic, 0.866; p value of Hosmer-Lemeshow test, 0.195) and validation cohort (C-statistic, 0.884; p value of Hosmer-Lemeshow test, 0.853). The ADVISING score also showed better discriminative performance compared with the other five existing ICH scores (p<0.001). CONCLUSIONS: ADVISING score is a reliable tool to predict functional dependency at 90 days after ICH.


Subject(s)
Cerebral Hemorrhage , Stroke , United States , Humans , Stroke/complications , China , Hematoma/complications
19.
Cells ; 12(1)2022 12 25.
Article in English | MEDLINE | ID: mdl-36611883

ABSTRACT

The method of iron-dependent cell death known as ferroptosis is distinct from apoptosis. The suppression of ferroptosis after intracerebral hemorrhage (ICH) will effectively treat ICH and improve prognosis. This paper primarily summarizes the mechanism of ferroptosis after ICH, with an emphasis on lipid peroxidation, the antioxidant system, iron metabolism, and other pathways. In addition, regulatory targets and drug molecules were described. Although there has been some progress in the field of study, there are still numerous gaps. The mechanism by which non-heme iron enters neurons through the blood-brain barrier (BBB), the mitochondrial role in ferroptosis, and the specific mechanism by which lipid peroxidation induces ferroptosis remain unclear and require further study. In addition, the inhibitory effect of many drugs on ferroptosis after ICH has only been demonstrated in basic experiments and must be translated into clinical trials. In summary, research on ferroptosis following ICH will play an important role in the treatment of ICH.


Subject(s)
Ferroptosis , Humans , Ferroptosis/physiology , Cerebral Hemorrhage/metabolism , Apoptosis , Cell Death/physiology , Iron/metabolism
20.
Mater Today Bio ; 16: 100368, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35937578

ABSTRACT

Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases.

SELECTION OF CITATIONS
SEARCH DETAIL