Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 110(3): 516-530, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36796361

ABSTRACT

Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.


Subject(s)
Asthenozoospermia , Tupaia , Animals , Male , Macaca fascicularis , Primates , Semen , Sperm Motility , Tupaiidae
2.
Hum Mol Genet ; 32(10): 1730-1740, 2023 05 05.
Article in English | MEDLINE | ID: mdl-36708031

ABSTRACT

Oligoasthenoteratozoospermia (OAT) can result in male infertility owing to reduced sperm motility and abnormal spermatozoan morphology. The Tektins are a family of highly conserved filamentous proteins expressed in the axoneme and associated structures in many different metazoan species. Earlier studies on mice identified Tektin3 (Tekt3) as a testis-enriched gene, and knockout of Tekt3 resulted in asthenozoospermia in the mice. Here, whole-exome sequencing of 100 males with asthenozoospermia from unrelated families was performed, followed by Sanger sequencing, leading to the identification of TEKT3 as a candidate gene in two of these patients and their associated family members. In total, three mutations in the TEKT3 gene were identified in both these patients, including one homozygous deletion-insertion mutation (c.543_547delinsTTGAT: p.Glu182*) and one compound heterozygous mutation (c.[548G > A]; [752A > C], p.[Arg183Gln]; [Gln251Pro]). Both of these mutations resulted in the complete loss of TEKT3 expression. The patients were both found to produce sperm that, although those showed no apparent defects in the flagellar structure, had reduced progressive motility. In contrast to mice, most sperm from these two patients exhibited acrosomal hypoplasia, although this did not prevent the use of the sperm for in vitro fertilization through an ICSI approach. TEKT3 was found to bind to other TEKT proteins, suggesting that these proteins form a complex within human spermatozoa. Overall, these results suggest that a loss of TEKT3 function can contribute to OAT incidence in humans. TEKT3 deficiencies can reduce sperm motility and contribute to severe acrosomal hypoplasia in spermatozoa, compromising their normal function.


Subject(s)
Asthenozoospermia , Infertility, Male , Oligospermia , Animals , Humans , Male , Mice , Asthenozoospermia/genetics , Homozygote , Infertility, Male/genetics , Mutation , Oligospermia/genetics , Semen , Sequence Deletion , Sperm Motility/genetics , Spermatozoa
3.
Am J Hum Genet ; 109(1): 157-171, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34932939

ABSTRACT

Asthenoteratozoospermia, defined as reduced sperm motility and abnormal sperm morphology, is a disorder with considerable genetic heterogeneity. Although previous studies have identified several asthenoteratozoospermia-associated genes, the etiology remains unknown for the majority of affected men. Here, we performed whole-exome sequencing on 497 unrelated men with asthenoteratozoospermia and identified DNHD1 bi-allelic variants from eight families (1.6%). All detected variants were predicted to be deleterious via multiple bioinformatics tools. Hematoxylin and eosin (H&E) staining revealed that individuals with bi-allelic DNHD1 variants presented striking abnormalities of the flagella; transmission electron microscopy (TEM) further showed flagellar axoneme defects, including central pair microtubule (CP) deficiency and mitochondrial sheath (MS) malformations. In sperm from fertile men, DNHD1 was localized to the entire flagella of the normal sperm; however, it was nearly absent in the flagella of men with bi-allelic DNHD1 variants. Moreover, abundance of the CP markers SPAG6 and SPEF2 was significantly reduced in spermatozoa from men harboring bi-allelic DNHD1 variants. In addition, Dnhd1 knockout male mice (Dnhd1‒/‒) exhibited asthenoteratozoospermia and infertility, a finding consistent with the sperm phenotypes present in human subjects with DNHD1 variants. The female partners of four out of seven men who underwent intracytoplasmic sperm injection therapy subsequently became pregnant. In conclusion, our study showed that bi-allelic DNHD1 variants cause asthenoteratozoospermia, a finding that provides crucial insights into the biological underpinnings of this disorder and should assist with counseling of affected individuals.


Subject(s)
Alleles , Asthenozoospermia/genetics , Axoneme/genetics , Dyneins/genetics , Flagella/genetics , Genetic Predisposition to Disease , Mutation , Animals , Asthenozoospermia/diagnosis , Axoneme/pathology , Computational Biology/methods , DNA Mutational Analysis , Disease Models, Animal , Flagella/pathology , Gene Frequency , Genetic Association Studies , Humans , Infertility, Male/genetics , Male , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/ultrastructure , Pedigree , Phenotype , Semen Analysis , Sperm Tail/pathology , Sperm Tail/ultrastructure , Exome Sequencing
4.
J Med Genet ; 61(6): 553-565, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38341271

ABSTRACT

BACKGROUND: The association between the TDRD6 variants and human infertility remains unclear, as only one homozygous missense variant of TDRD6 was found to be associated with oligoasthenoteratozoospermia (OAT). METHODS: Whole-exome sequencing and Sanger sequencing were employed to identify potential pathogenic variants of TDRD6 in infertile men. Histology, immunofluorescence, immunoblotting and ultrastructural analyses were conducted to clarify the structural and functional abnormalities of sperm in mutated patients. Tdrd6-knockout mice were generated using the CRISPR-Cas9 system. Total RNA-seq and single-cell RNA-seq (scRNA-seq) analyses were used to elucidate the underlying molecular mechanisms, followed by validation through quantitative RT-PCR and immunostaining. Intracytoplasmic sperm injection (ICSI) was also used to assess the efficacy of clinical treatment. RESULTS: Bi-allelic TDRD6 variants were identified in five unrelated Chinese individuals with OAT, including homozygous loss-of-function variants in two consanguineous families. Notably, besides reduced concentrations and impaired motility, a significant occurrence of acrosomal hypoplasia was detected in multiple spermatozoa among five patients. Using the Tdrd6-deficient mice, we further elucidate the pivotal role of TDRD6 in spermiogenesis and acrosome identified. In addition, the mislocalisation of crucial chromatoid body components DDX4 (MVH) and UPF1 was also observed in round spermatids from patients harbouring TDRD6 variants. ScRNA-seq analysis of germ cells from a patient with TDRD6 variants revealed that TDRD6 regulates mRNA metabolism processes involved in spermatid differentiation and cytoplasmic translation. CONCLUSION: Our findings strongly suggest that TDRD6 plays a conserved role in spermiogenesis and confirms the causal relationship between TDRD6 variants and human OAT. Additionally, this study highlights the unfavourable ICSI outcomes in individuals with bi-allelic TDRD6 variants, providing insights for potential clinical treatment strategies.


Subject(s)
Alleles , Asthenozoospermia , Exome Sequencing , Mice, Knockout , Spermatogenesis , Adult , Animals , Humans , Male , Mice , Acrosome/pathology , Asthenozoospermia/genetics , Asthenozoospermia/pathology , Infertility, Male/genetics , Infertility, Male/pathology , Oligospermia/genetics , Oligospermia/pathology , Pedigree , Sperm Injections, Intracytoplasmic , Spermatogenesis/genetics , Spermatozoa/pathology , Spermatozoa/metabolism
5.
Am J Hum Genet ; 108(8): 1466-1477, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34237282

ABSTRACT

Multiple morphological abnormalities of the sperm flagella (MMAF)-induced asthenoteratozoospermia is a common cause of male infertility. Previous studies have identified several MMAF-associated genes, highlighting the condition's genetic heterogeneity. To further define the genetic causes underlying MMAF, we performed whole-exome sequencing in a cohort of 643 Chinese MMAF-affected men. Bi-allelic DNAH10 variants were identified in five individuals with MMAF from four unrelated families. These variants were either rare or absent in public population genome databases and were predicted to be deleterious by multiple bioinformatics tools. Morphological and ultrastructural analyses of the spermatozoa obtained from men harboring bi-allelic DNAH10 variants revealed striking flagellar defects with the absence of inner dynein arms (IDAs). DNAH10 encodes an axonemal IDA heavy chain component that is predominantly expressed in the testes. Immunostaining analysis indicated that DNAH10 localized to the entire sperm flagellum of control spermatozoa. In contrast, spermatozoa from the men harboring bi-allelic DNAH10 variants exhibited an absence or markedly reduced staining intensity of DNAH10 and other IDA components, including DNAH2 and DNAH6. Furthermore, the phenotypes were recapitulated in mouse models lacking Dnah10 or expressing a disease-associated variant, confirming the involvement of DNAH10 in human MMAF. Altogether, our findings in humans and mice demonstrate that DNAH10 is essential for sperm flagellar assembly and that deleterious bi-allelic DNAH10 variants can cause male infertility with MMAF. These findings will provide guidance for genetic counseling and insights into the diagnosis of MMAF-associated asthenoteratozoospermia.


Subject(s)
Asthenozoospermia/complications , Disease Models, Animal , Dyneins/genetics , Infertility, Male/pathology , Mutation , Phenotype , Spermatozoa/pathology , Alleles , Animals , Homozygote , Humans , Infertility, Male/etiology , Infertility, Male/metabolism , Male , Mice , Mice, Knockout , Spermatozoa/metabolism , Exome Sequencing
6.
Am J Hum Genet ; 108(2): 309-323, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33472045

ABSTRACT

Asthenoteratozoospermia characterized by multiple morphological abnormalities of the flagella (MMAF) has been identified as a sub-type of male infertility. Recent progress has identified several MMAF-associated genes with an autosomal recessive inheritance in human affected individuals, but the etiology in approximately 40% of affected individuals remains unknown. Here, we conducted whole-exome sequencing (WES) and identified hemizygous missense variants in the X-linked CFAP47 in three unrelated Chinese individuals with MMAF. These three CFAP47 variants were absent in human control population genome databases and were predicted to be deleterious by multiple bioinformatic tools. CFAP47 encodes a cilia- and flagella-associated protein that is highly expressed in testis. Immunoblotting and immunofluorescence assays revealed obviously reduced levels of CFAP47 in spermatozoa from all three men harboring deleterious missense variants of CFAP47. Furthermore, WES data from an additional cohort of severe asthenoteratozoospermic men originating from Australia permitted the identification of a hemizygous Xp21.1 deletion removing the entire CFAP47 gene. All men harboring hemizygous CFAP47 variants displayed typical MMAF phenotypes. We also generated a Cfap47-mutated mouse model, the adult males of which were sterile and presented with reduced sperm motility and abnormal flagellar morphology and movement. However, fertility could be rescued by the use of intra-cytoplasmic sperm injections (ICSIs). Altogether, our experimental observations in humans and mice demonstrate that hemizygous mutations in CFAP47 can induce X-linked MMAF and asthenoteratozoospermia, for which good ICSI prognosis is suggested. These findings will provide important guidance for genetic counseling and assisted reproduction treatments.


Subject(s)
Asthenozoospermia/genetics , Infertility, Male/genetics , Animals , Asthenozoospermia/pathology , Asthenozoospermia/physiopathology , Cohort Studies , Female , Gene Deletion , Genes, X-Linked , Hemizygote , Humans , Infertility, Male/metabolism , Infertility, Male/pathology , Infertility, Male/physiopathology , Male , Mice, Inbred C57BL , Mutation , Mutation, Missense , Pedigree , Phenotype , Sperm Injections, Intracytoplasmic , Sperm Motility , Sperm Tail/ultrastructure , Spermatozoa/pathology , Spermatozoa/physiology , Spermatozoa/ultrastructure , Exome Sequencing
7.
BMC Microbiol ; 24(1): 169, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760705

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is an endocrinopathy in childbearing-age females which can cause many complications, such as diabetes, obesity, and dyslipidemia. The metabolic disorders in patients with PCOS were linked to gut microbial dysbiosis. However, the correlation between the gut microbial community and dyslipidemia in PCOS remains unillustrated. Our study elucidated the different gut microbiota in patients with PCOS and dyslipidemia (PCOS.D) compared to those with only PCOS and healthy women. RESULTS: In total, 18 patients with PCOS, 16 healthy females, and 18 patients with PCOS.D were enrolled. The 16 S rRNA sequencing in V3-V4 region was utilized for identifying the gut microbiota, which analyzes species annotation, community diversity, and community functions. Our results showed that the ß diversity of gut microbiota did not differ significantly among the three groups. Regarding gut microbiota dysbiosis, patients with PCOS showed a decreased abundance of Proteobacteria, and patients with PCOS.D showed an increased abundance of Bacteroidota compared to other groups. With respect to the gut microbial imbalance at genus level, the PCOS.D group showed a higher abundance of Clostridium_sensu_stricto_1 compared to other two groups. Furthermore, the abundances of Faecalibacterium and Holdemanella were lower in the PCOS.D than those in the PCOS group. Several genera, including Faecalibacterium and Holdemanella, were negatively correlated with the lipid profiles. Pseudomonas was negatively correlated with luteinizing hormone levels. Using PICRUSt analysis, the gut microbiota community functions suggested that certain metabolic pathways (e.g., amino acids, glycolysis, and lipid) were altered in PCOS.D patients as compared to those in PCOS patients. CONCLUSIONS: The gut microbiota characterizations in patients with PCOS.D differ from those in patients with PCOS and controls, and those might also be related to clinical parameters. This may have the potential to become an alternative therapy to regulate the clinical lipid levels of patients with PCOS in the future.


Subject(s)
Bacteria , Dysbiosis , Dyslipidemias , Gastrointestinal Microbiome , Polycystic Ovary Syndrome , RNA, Ribosomal, 16S , Humans , Polycystic Ovary Syndrome/microbiology , Female , Dyslipidemias/microbiology , Adult , Dysbiosis/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Young Adult , Feces/microbiology
8.
Clin Genet ; 105(1): 99-105, 2024 01.
Article in English | MEDLINE | ID: mdl-37715646

ABSTRACT

Non-obstructive azoospermia (NOA) is the most severe form of human male infertility, and the genetic causes of NOA with meiotic arrest remain largely unclear. In this study, we identified novel compound heterozygous MEIOB variants (c.814C > T: p.R272X and c.976G > A: p.A326T) and a previously undescribed homozygous non-canonical splicing variant of MEIOB (c.528 + 3A > C) in two NOA-affected individuals from two irrelevant Chinese families. MEIOB missense variant (p.A326T) significantly reduced protein abundance and nonsense variant (p.R272X) produced a truncated protein. Both of two variants impaired the MEIOB-SPATA22 interaction. The MEIOB non-canonical splicing variant resulted in whole Exon 6 skipping by minigene assay, which was predicted to produce a frameshift truncated protein (p.S111Rfs*32). Histological and immunostaining analysis indicated that both patients exhibited a similar phenotype as we previously reported in Meiob mutant mice, that is, absence of spermatids in seminiferous tubules and meiotic arrest. Our study identified three novel pathogenic variants of MEIOB in NOA patients, extending the mutation spectrum of the MEIOB and highlighting the contribution of meiotic recombination related genes in human fertility.


Subject(s)
Azoospermia , Infertility, Male , Humans , Male , Mice , Animals , Azoospermia/genetics , Azoospermia/pathology , Infertility, Male/genetics , Mutation/genetics , Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Meiosis/genetics , DNA-Binding Proteins/genetics
9.
Reprod Biomed Online ; 48(2): 103422, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38030535

ABSTRACT

RESEARCH QUESTION: Does severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection during ovarian stimulation affect assisted reproductive technology outcomes? DESIGN: This retrospective cohort study conducted at the Reproductive Medicine Centre of The First Affiliated Hospital of Anhui Medical University aimed to assess the effects of acute SARS-CoV-2 infection during IVF on treatment outcomes and the reproductive system. The study included 151 treatment cycles involving couples with coronavirus disease 2019 (COVID-19) during ovarian stimulation, along with 224 cycles of non-infected couples as a control group. Clinical characteristics and laboratory parameters were analysed, including total gonadotrophin dosage, duration of ovarian stimulation, number of oocytes retrieved, fertilization method, fertilization rate, and number of blastocyst embryos available. Forty-six follicular fluid samples, 38 semen samples and 78 embryo culture medium samples from patients with COVID-19 were tested for SARS-CoV-2 RNA using reverse transcription polymerase chain reaction assay. RESULTS: The treatment and control groups showed similar cycle characteristics, including fertilization method, total gonadotrophin dosage and duration of ovarian stimulation. The mean number of oocytes retrieved per cycle and rate of mature oocytes in intracytoplasmic sperm injection cycles were comparable. No significant difference was observed in the total number of blastocyst embryos available between the groups. Furthermore, no SARS-CoV-2 RNA was detected in any of the samples of patients with COVID-19. CONCLUSIONS: In conclusion, acute SARS-CoV-2 infection during ovarian stimulation does not have a significant impact on IVF treatment outcomes. Additionally, no risk to the reproductive system was observed in patients infected with SARS-CoV-2. Therefore, individuals with asymptomatic or mild COVID-19 can safely continue IVF treatment. Future research is needed to investigate the long-term effects of COVID-19 on fertility and reproductive outcomes.


Subject(s)
COVID-19 , Fertilization in Vitro , Female , Humans , Male , Pregnancy , Fertilization in Vitro/methods , Retrospective Studies , RNA, Viral , SARS-CoV-2 , Semen , Ovulation Induction/methods , Gonadotropins , Pregnancy Rate
10.
J Med Genet ; 60(2): 137-143, 2023 02.
Article in English | MEDLINE | ID: mdl-35228300

ABSTRACT

BACKGROUND: As a common type of asthenoteratozoospermia, multiple morphological abnormalities of the sperm flagella (MMAF) can cause male infertility. Previous studies have revealed genetic factors as a major cause of MMAF. The known MMAF-associated genes are involved in the mitochondrial sheath, outer dense fibre or axoneme of the sperm flagella. These findings indicate the genetic heterogeneity of MMAF. METHODS AND RESULTS: Here, we conducted genetic analyses using whole-exome sequencing in a cohort of 150 Han Chinese men with asthenoteratozoospermia. Homozygous deleterious variants of AKAP3 (A-kinase anchoring protein 3) were identified in two MMAF-affected men from unrelated families. One AKAP3 variant was a frameshift (c.2286_2287del, p.His762Glnfs*22) and the other variant was a missense mutation (c.44G>A, p.Cys15Tyr), which was predicted to be damaging by multiple bioinformatics tools. Further western blotting and immunofluorescence assays revealed the absence of AKAP3 in the spermatozoa from the man harbouring the homozygous frameshift variant, whereas the expression of AKAP3 was markedly reduced in the spermatozoa of the man with the AKAP3 missense variant p.Cys15Tyr. Notably, the clinical outcomes after intracytoplasmic sperm injection (ICSI) were divergent between these two cases, suggesting a possibility of AKAP3 dosage-dependent prognosis of ICSI treatment. CONCLUSIONS: Our study revealed AKAP3 as a novel gene involved in human asthenoteratozoospermia.


Subject(s)
Abnormalities, Multiple , Asthenozoospermia , Infertility, Male , Male , Humans , Asthenozoospermia/genetics , Mutation , Semen/metabolism , Sperm Tail/metabolism , Spermatozoa/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Abnormalities, Multiple/genetics , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism
11.
J Med Genet ; 60(8): 827-834, 2023 08.
Article in English | MEDLINE | ID: mdl-36593121

ABSTRACT

BACKGROUND: Spermatogenic impairments can lead to male infertility by different pathological conditions, such as multiple morphological abnormalities of the sperm flagella (MMAF) and non-obstructive azoospermia (NOA). Genetic factors are involved in impaired spermatogenesis. METHODS AND RESULTS: Here, we performed genetic analyses through whole-exome sequencing in a cohort of 334 Han Chinese probands with severe MMAF or NOA. Biallelic variants of CFAP54 were identified in three unrelated men, including one homozygous frameshift variant (c.3317del, p.Phe1106Serfs*19) and two compound heterozygous variants (c.878G>A, p.Arg293His; c.955C>T, p.Arg319Cys and c.4885C>T, p.Arg1629Cys; c.937G>A, p.Gly313Arg). All of the identified variants were absent or extremely rare in the public human genome databases and predicted to be damaging by bioinformatic tools. The men harbouring CFAP54 mutations exhibited abnormal sperm morphology, reduced sperm concentration and motility in ejaculated semen. Significant axoneme disorganisation and other ultrastructure abnormities were also detected inside the sperm cells from men harbouring CFAP54 mutations. Furthermore, immunofluorescence assays showed remarkably reduced staining of four flagellar assembly-associated proteins (IFT20, IFT52, IFT122 and SPEF2) in the spermatozoa of CFAP54-deficient men. Notably, favourable clinical pregnancy outcomes were achieved with sperm from men carrying CFAP54 mutations after intracytoplasmic sperm injection treatment. CONCLUSION: Our genetic analyses and experimental observations revealed that biallelic deleterious mutations of CFAP54 can induce severe MMAF and NOA in humans.


Subject(s)
Azoospermia , Cytoskeletal Proteins , Infertility, Male , Female , Humans , Male , Pregnancy , Azoospermia/pathology , Infertility, Male/pathology , Mutation , Sperm Tail/pathology , Spermatozoa/pathology , Cytoskeletal Proteins/genetics
12.
Nucleic Acids Res ; 50(16): 9115-9126, 2022 09 09.
Article in English | MEDLINE | ID: mdl-35993808

ABSTRACT

A proportion of previously defined benign variants or variants of uncertain significance in humans, which are challenging to identify, may induce an abnormal splicing process. An increasing number of methods have been developed to predict splicing variants, but their performance has not been completely evaluated using independent benchmarks. Here, we manually sourced ∼50 000 positive/negative splicing variants from > 8000 studies and selected the independent splicing variants to evaluate the performance of prediction methods. These methods showed different performances in recognizing splicing variants in donor and acceptor regions, reminiscent of different weight coefficient applications to predict novel splicing variants. Of these methods, 66.67% exhibited higher specificities than sensitivities, suggesting that more moderate cut-off values are necessary to distinguish splicing variants. Moreover, the high correlation and consistent prediction ratio validated the feasibility of integration of the splicing prediction method in identifying splicing variants. We developed a splicing analytics platform called SPCards, which curates splicing variants from publications and predicts splicing scores of variants in genomes. SPCards also offers variant-level and gene-level annotation information, including allele frequency, non-synonymous prediction and comprehensive functional information. SPCards is suitable for high-throughput genetic identification of splicing variants, particularly those located in non-canonical splicing regions.


Subject(s)
RNA Splicing , Humans , RNA Splicing/genetics , Gene Frequency , Molecular Sequence Annotation
13.
Article in English | MEDLINE | ID: mdl-38676843

ABSTRACT

PURPOSE: Male cancer survivors experience confusion about fertility following cancer treatment. The aims of this study were to evaluate survivors' semen quality in different tumor type groups in China and to analyze the current situation and challenges of male cancer patients with sperm cryopreservation. METHODS: This was a multicenter retrospective study of male patients with cancer who underwent sperm cryopreservation in 16 regions of the national sperm banks over an 11-year period from 2010 to 2020. RESULTS: The number of male cancer patients with sperm cryopreservation showed an overall upward trend. The development of male cancer fertility preservation (FP) in the eastern, central, and western regions of Chinese displayed imbalance. There are seven tumor types for sperm preservation in the top incidence ten tumor types, including lymphoma, leukemia, nasopharyngeal carcinoma, sarcoma, thyroid cancer, and brain tumor. Moreover, nasopharyngeal carcinoma is a high incidence rate in China, which is related to high sperm preservation rate, different from other countries. The most percentage of males receiving sperm cryopreservation in the testicular cancers (15-39 years old) of China in 2020 was 5.55%, 1.29% in the lymphoma, and 0.39% in the leukemia. According to the type of cancer, a statistically significant lower pre-sperm density, total sperm output, and post-sperm density was observed in testicular cancers. It is worth noting that the prevalence of azoospermia 22.2% in leukemia patients attribute to urgent treatment before sperm cryopreservation. Disposition of cryopreserved sperm categories included continued storage (47.2%), discarded (9%), death (0.9%), and use (3.7%). CONCLUSION: This study provides the first comprehensive national statistical census and review of fertility preservation in male cancer patients with respect to trends, prevalence, and cancer types. The development of male cancer fertility preservation in China is imbalanced and percentage of males receiving sperm cryopreservation in the adolescent and young adult cancers was low. Sixteen human sperm banks from China analyze current problems and challenges, and then prioritize steps toward the achievement of the FP strategy framework for Healthy China 2030.

14.
Hum Mol Genet ; 30(21): 1996-2011, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34169321

ABSTRACT

Motile cilia and flagellar defects can result in primary ciliary dyskinesia, which is a multisystemic genetic disorder that affects roughly 1:10 000 individuals. The nexin-dynein regulatory complex (N-DRC) links neighboring doublet microtubules within flagella, serving as a central regulatory hub for motility in Chlamydomonas. Herein, we identified two homozygous DRC1 variants in human patients that were associated with multiple morphological abnormalities of the sperm flagella (MMAF) and male infertility. Drc1-/-, Drc1R554X/R554X and Drc1W244X/W244X mice on the C57BL/6 background suffered from pre-pubertal mortality. However, when the ICR background was introduced, some of these mice were able to survive and recapitulate the MMAF phenotypes detected in human patients. By analyzing these animals, we determined that DRC1 is an essential regulator of N-DRC assembly in cilia and flagella. When DRC1 is absent, this results in the shortening of cilia and consequent impairment of their motility. Damage associated with DRC1 deficiency in sperm flagella was more pronounced than in cilia, as manifested by complete axoneme structural disorder in addition to the loss of the DRC structure. Altogether, these findings suggest that DRC1 is required for the structural stability of flagella but not cilia, emphasizing the key role of this protein in mammalian species.


Subject(s)
Genetic Predisposition to Disease , Infertility, Male/diagnosis , Infertility, Male/genetics , Microtubule-Associated Proteins/deficiency , Phenotype , Sperm Tail/metabolism , Animals , Biomarkers , Consanguinity , Disease Models, Animal , Female , Genetic Association Studies , Homozygote , Humans , Male , Mice , Mice, Knockout , Mutation , Pedigree , Sperm Tail/pathology , Sperm Tail/ultrastructure , Spermatogenesis/genetics , Exome Sequencing
15.
Am J Hum Genet ; 107(2): 330-341, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32619401

ABSTRACT

Sperm malformation is a direct factor for male infertility. Multiple morphological abnormalities of the flagella (MMAF), a severe form of asthenoteratozoospermia, are characterized by immotile spermatozoa with malformed and/or absent flagella in the ejaculate. Previous studies indicated genetic heterogeneity in MMAF. To further define genetic factors underlying MMAF, we performed whole-exome sequencing in a cohort of 90 Chinese MMAF-affected men. Two cases (2.2%) were identified as carrying bi-allelic missense DNAH8 variants, variants which were either absent or rare in the control human population and were predicted to be deleterious by multiple bioinformatic tools. Re-analysis of exome data from a second cohort of 167 MMAF-affected men from France, Iran, and North Africa permitted the identification of an additional male carrying a DNAH8 homozygous frameshift variant. DNAH8 encodes a dynein axonemal heavy-chain component that is expressed preferentially in the testis. Hematoxylin-eosin staining and electron microscopy analyses of the spermatozoa from men harboring bi-allelic DNAH8 variants showed a highly aberrant morphology and ultrastructure of the sperm flagella. Immunofluorescence assays performed on the spermatozoa from men harboring bi-allelic DNAH8 variants revealed the absent or markedly reduced staining of DNAH8 and its associated protein DNAH17. Dnah8-knockout male mice also presented typical MMAF phenotypes and sterility. Interestingly, intracytoplasmic sperm injections using the spermatozoa from Dnah8-knockout male mice resulted in good pregnancy outcomes. Collectively, our experimental observations from humans and mice demonstrate that DNAH8 is essential for sperm flagellar formation and that bi-allelic deleterious DNAH8 variants lead to male infertility with MMAF.


Subject(s)
Abnormalities, Multiple/genetics , Axonemal Dyneins/genetics , Flagella/genetics , Genetic Variation/genetics , Infertility, Male/genetics , Sperm Tail/pathology , Alleles , Animals , Cohort Studies , Exome/genetics , Female , Homozygote , Humans , Male , Mice , Mice, Knockout , Spermatozoa/abnormalities , Testis/abnormalities , Exome Sequencing/methods
16.
Am J Hum Genet ; 107(3): 514-526, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32791035

ABSTRACT

Multiple morphological abnormalities of the sperm flagella (MMAF) is a severe form of asthenoteratozoospermia. Although recent studies have revealed several MMAF-associated genes and demonstrated MMAF to be a genetically heterogeneous disease, at least one-third of the cases are still not well understood for their etiology. Here, we identified bi-allelic loss-of-function variants in CFAP58 by using whole-exome sequencing in five (5.6%) unrelated individuals from a cohort of 90 MMAF-affected Chinese men. Each of the men harboring bi-allelic CFAP58 variants presented typical MMAF phenotypes. Transmission electron microscopy demonstrated striking flagellar defects with axonemal and mitochondrial sheath malformations. CFAP58 is predominantly expressed in the testis and encodes a cilia- and flagella-associated protein. Immunofluorescence assays showed that CFAP58 localized at the entire flagella of control sperm and predominantly concentrated in the mid-piece. Immunoblotting and immunofluorescence assays showed that the abundances of axoneme ultrastructure markers SPAG6 and SPEF2 and a mitochondrial sheath protein, HSP60, were significantly reduced in the spermatozoa from men harboring bi-allelic CFAP58 variants. We generated Cfap58-knockout mice via CRISPR/Cas9 technology. The male mice were infertile and presented with severe flagellar defects, consistent with the sperm phenotypes in MMAF-affected men. Overall, our findings in humans and mice strongly suggest that CFAP58 plays a vital role in sperm flagellogenesis and demonstrate that bi-allelic loss-of-function variants in CFAP58 can cause axoneme and peri-axoneme malformations leading to male infertility. This study provides crucial insights for understanding and counseling of MMAF-associated asthenoteratozoospermia.


Subject(s)
Abnormalities, Multiple/genetics , Asthenozoospermia/genetics , Axoneme/genetics , Infertility, Male/genetics , Intercellular Signaling Peptides and Proteins/genetics , Abnormalities, Multiple/pathology , Alleles , Animals , Asthenozoospermia/physiopathology , Axoneme/pathology , CRISPR-Cas Systems/genetics , Cell Cycle Proteins/genetics , Homozygote , Humans , Infertility, Male/pathology , Loss of Function Mutation/genetics , Loss of Heterozygosity/genetics , Male , Mice , Mice, Knockout , Microtubule Proteins/genetics , Mitochondria/genetics , Sperm Tail/metabolism , Sperm Tail/pathology , Testis/metabolism , Testis/pathology , Exome Sequencing
17.
Clin Genet ; 104(6): 694-699, 2023 12.
Article in English | MEDLINE | ID: mdl-37804054

ABSTRACT

Asthenozoospermia (AZS) is the primary cause of infertility in males. The radial spoke (RS) is an axonemal structure, connecting the peripheral doublet microtubules with the central pair of microtubules. This T-shaped multiprotein complex functions as a mechanochemical sensor to promote sperm motility. LRRC23 is a novel subunit of the RS complex that is necessary for flagellar assembly and movement in mice. However, the importance of LRRC23 in modulating RS formation in humans remains unclear. Here, we identified a homozygous nonsense mutation in LRRC23 (c.376C>T:p. Arg126X) in an infertile AZS patient whose parents were consanguineous. We verified the adversity of this novel mutation because of its ability to disrupt LRRC23 synthesis and impair RSs integrity. Furthermore, we demonstrated an interaction between LRRC23 and RSPH3 in vitro, indicating that LCCR23 is associated with RS in humans. Meanwhile, the LRRC23-mutant patient had a good prognosis following intracytoplasmic sperm injection. This study provides strong preliminary evidence that LRRC23 defects are potential causative factors of AZS in humans, which expands our knowledge for improved genetic counseling and better reproductive recommendations for patients with AZS.


Subject(s)
Asthenozoospermia , Infertility, Male , Male , Humans , Animals , Mice , Asthenozoospermia/genetics , Sperm Motility , Semen , Infertility, Male/genetics , Axoneme/genetics , Spermatozoa
18.
Hum Reprod ; 38(6): 1213-1223, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37004249

ABSTRACT

STUDY QUESTION: Does a homozygous nonsense mutation in ACR lead to total fertilization failure (TFF) resulting in male infertility in humans? SUMMARY ANSWER: A novel homozygous nonsense mutation of ACR (c.167G>A, p.Trp56X) was identified in two infertile brothers and shown to cause human TFF. WHAT IS KNOWN ALREADY: ACROSIN, encoded by ACR, is a major acrosomal enzyme expressed only in the acrosome of the sperm head. Inhibition of acrosin prevents sperm penetration of the zona pellucida (ZP) in several species, including humans. Acr-knockout in hamsters causes male infertility with completely blocked fertilization. Of note, there are no reports of ACR mutations associated with TFF in humans. STUDY DESIGN, SIZE, DURATION: Whole-exome sequencing (WES) was used for the identification of pathogenic genes for male factor TFF in eight involved couples. PARTICIPANTS/MATERIALS, SETTING, METHODS: Data from eight infertile couples who had experienced TFF during their IVF or ICSI attempts were collected. Functional assays were used to verify the pathogenicity of the potential genetic factors identified by WES. Subzonal insemination (SUZI) and IVF assays were performed to determine the exact pathogenesis of TFF caused by deficiencies in ACROSIN. MAIN RESULTS AND THE ROLE OF CHANCE: A novel homozygous nonsense mutation in ACR, c.167G>A, p.Trp56X, was identified in two additional primary infertile brothers whose parents were first cousins. This rare mutation caused ACROSIN deficiency and acrosomal ultrastructural defects in the affected sperm. Spermatozoa lacking ACROSIN were unable to penetrate the ZP, rather than hampering sperm binding, disrupting gamete fusion, or preventing oocyte activation. These findings were supported by the fertilization success of SUZI and ICSI attempts, as well as the normal expression of ACTL7A and PLCζ in the mutant sperm, suggesting that ICSI without remedial assisted oocyte activation is an optimal treatment for ARCOSIN-deficient TFF. LIMITATIONS, REASONS FOR CAUTION: The absence of another independent pedigree to support our argument is a limitation of this study. WIDER IMPLICATIONS OF THE FINDINGS: The findings expand our understanding of the genes involved in human TFF, providing information for appropriate genetic counseling and fertility guidance for these patients. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Natural Science Foundation of China (grant no. 82201803, 81901541, 82271639, and 32000584), University Synergy Innovation Program of Anhui Province (GXXT-2019-044), and the Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (grant no. 2019PT310002). The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Acrosin , Infertility, Male , Animals , Cricetinae , Humans , Male , Acrosin/genetics , Acrosin/metabolism , Zona Pellucida/metabolism , Codon, Nonsense/metabolism , Semen/metabolism , Spermatozoa/metabolism , Sperm-Ovum Interactions/genetics , Infertility, Male/genetics , Infertility, Male/metabolism
19.
J Med Genet ; 59(7): 710-718, 2022 07.
Article in English | MEDLINE | ID: mdl-34348960

ABSTRACT

BACKGROUND: Oligoasthenoteratozoospermia is a typical feature of sperm malformations leading to male infertility. Only a few genes have been clearly identified as pathogenic genes of oligoasthenoteratozoospermia. METHODS AND RESULTS: Here, we identified a homozygous frameshift variant (c.731dup, p.Asn244Lysfs*3) in CCDC34, which is preferentially expressed in the human testis, using whole-exome sequencing in a cohort of 100 Chinese men with multiple morphological abnormalities of the sperm flagella (MMAF). In an additional cohort of 167 MMAF-affected men from North Africa, Iran and France, we identified a second subject harbouring a homozygous CCDC34 frameshift variant (c.799_817del, p.Glu267Lysfs*72). Both affected men presented a typical MMAF phenotype with an abnormally low sperm concentration (ie, oligoasthenoteratozoospermia). Transmission electron microscopy analysis of the sperm flagella affected by CCDC34 deficiency further revealed dramatic disorganisation of the axoneme. Immunofluorescence assays of the spermatozoa showed that CCDC34 deficiency resulted in almost absent staining of CCDC34 and intraflagellar transport-B complex-associated proteins (such as IFT20 and IFT52). Furthermore, we generated a mouse Ccdc34 frameshift mutant using CRISPR-Cas9 technology. Ccdc34-mutated (Ccdc34mut/mut ) male mice were sterile and presented oligoasthenoteratozoospermia with typical MMAF anomalies. Intracytoplasmic sperm injection has good pregnancy outcomes in both humans and mice. CONCLUSIONS: Our findings support that CCDC34 is crucial to the formation of sperm flagella and that biallelic deleterious mutations in CCDC34/Ccdc34 cause male infertility with oligoasthenoteratozoospermia in humans and mice.


Subject(s)
Asthenozoospermia , Infertility, Male , Neoplasm Proteins , Oligospermia , Animals , Antigens, Neoplasm , Asthenozoospermia/genetics , Asthenozoospermia/pathology , Female , Humans , Infertility, Male/genetics , Infertility, Male/pathology , Male , Mice , Mutation/genetics , Neoplasm Proteins/genetics , Oligospermia/genetics , Oligospermia/pathology , Pregnancy , Semen , Spermatozoa/pathology , Testis/pathology
20.
J Assist Reprod Genet ; 40(10): 2485-2492, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37574497

ABSTRACT

PURPOSE: To identify new mutations in DNAH17 that cause male infertility and analyze intracytoplasmic sperm injection (ICSI) outcomes in patients with DNAH17 mutations. METHODS: A total of five cases of new DNAH17 mutations exhibiting the multiple morphological abnormalities of the sperm flagella (MMAF) phenotype were identified through semen analysis and genetic testing. They were recruited at our reproductive medicine center from September 2018 to July 2022. Information on DNAH17 genetic mutations and ICSI outcomes was systematically explored following a literature review. RESULTS: Three novel compound mutations in DNAH17 were identified in patients with male infertility caused by MMAF. This study and previous publications included 21 patients with DNAH17 mutations. DNAH17 has been associated with asthenozoospermia and male infertility, but different types of DNAH17 variants appear to be involved in different sperm phenotypes. In 11 couples of infertile patients with DNAH17 mutations, there were 17 ICSI cycles and 13 embryo transplantation cycles. Only three men with DNAH17 variants ultimately achieved clinical pregnancy with their partners through ICSI combined with assisted oocyte activation (AOA). CONCLUSIONS: Loss-of-function mutations in DNAH17 can lead to severe sperm flagellum defects and male infertility. Patients with MMAF-harboring DNAH17 mutations generally have worse pregnancy outcomes following ICSI. ICSI combined with AOA may improve the outcome of assisted reproductive techniques (ARTs) for men with DNAH17 variants.


Subject(s)
Infertility, Male , Sperm Tail , Pregnancy , Female , Humans , Male , Sperm Injections, Intracytoplasmic/adverse effects , Semen , Spermatozoa , Infertility, Male/genetics , Mutation/genetics , Axonemal Dyneins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL