Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Opt Express ; 32(6): 9877-9889, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571212

ABSTRACT

We present a systematic theoretical study on the angular distribution and linear polarization of x-ray line emissions of neon-like ions following the electron-impact excitation from the ground state to the excited levels [(2p5)1/23d3/2]J=1, [(2p5)3/23d5/2]J=1, [(2p5)3/23d3/2]J=1, and [(2p5)1/23s]J=1. The cross sections are calculated by using the flexible atomic code under configuration-interaction plus many-body perturbation theory method. The angular distribution and linear polarization are obtained based on density matrix theory. Emphasis has been placed on the effect of the configuration mixing on the angular distribution and polarization. It has been proved that the strong mixing of configuration [(2p5)3/23d3/2]J=1 with configuration [(2p5)1/23s]J=1 can result in the abrupt change of Z-dependence of angular distribution and polarization. It indicates that angular distribution and polarization can be expected to serve as a tool for investigation of configuration mixing effect.

2.
Opt Express ; 30(14): 25326-25338, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36237065

ABSTRACT

The resonance 3C ([(2p5)1/23d3/2]J=1 → [2p6]J=0) to intercombination 3D ([(2p5)3/23d5/2]J=1 → [2p6]J=0) line intensity ratio of neonlike ions has been studied. The measured line intensity ratio for neonlike Xe44+ ions shows an apparent change, which is reproduced by the calculations using the relativistic configuration interaction plus many-body perturbation theory. It is clearly elucidated that the change in the 3C/3D line intensity ratio is caused by strong configuration mixing between the upper levels of the 3D and 3F ([(2p5)1/23s]J=1 → [2p6]J=0) lines. The present measurement allows us to discuss the 3C/3D line intensity ratio for the highest-Z ions hitherto, which suggests that the experiment-theory discrepancy in the 3C/3D line intensity ratio of neonlike ions diminishes with increasing atomic number Z and further trends to vanish at higher-Z ions. Furthermore, the present study provides benefits to better understand configuration mixing effect in the radiative opacity of hot plasmas.

SELECTION OF CITATIONS
SEARCH DETAIL