Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
Add more filters

Publication year range
1.
J Transl Med ; 22(1): 75, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38243264

ABSTRACT

BACKGROUNDS: Unilateral high myopia (uHM), commonly observed in patients with retinal diseases or only with high myopia, is frequently associated with amblyopia with poor prognosis. This study aims to reveal the clinical and genetic spectrum of uHM in a large Chinese cohort. METHODS: A total of 75 probands with simplex uHM were included in our Pediatric and Genetic Eye Clinic. Patients with significant posterior anomalies other than myopic fundus changes were excluded. Variants were detected by exome sequencing and then analyzed through multiple-step bioinformatic and co-segregation analysis and finally confirmed by Sanger sequencing. Genetic findings were correlated with associated clinical data for analysis. RESULTS: Among the 75 probands with a mean age of 6.21 ± 4.70 years at the presentation, myopic fundus of C1 and C2 was observed in 73 (97.3%) probands. Surprisingly, specific peripheral changes were identified in 63 eyes involving 36 (48.0%) probands after extensive examination, including peripheral retinal avascular zone (74.6%, 47/63 eyes), neovascularization (54.0%), fluorescein leakage (31.7%), peripheral pigmentary changes (31.7%), and others. Exome sequencing identified 21 potential pathogenic variants of 13 genes in 20 of 75 (26.7%) probands, including genes for Stickler syndrome (COL11A1 and COL2A1; 6/20), FEVR (FZD4, LRP5, and TSPAN12; 5/20), and others (FBN1, GPR179, ZEB2, PAX6, GPR143, OPN1LW, FRMD7, and CACNA1F; 9/20). For the peripheral retinal changes in the 20 probands, variants in Stickler syndrome-related genes were predominantly associated with retinal pigmentary changes, lattice degeneration, and retinal avascular region, while variants in genes related to FEVR were mainly associated with the avascular zone, neovascularization, and fluorescein leakage. CONCLUSIONS: Genetic defects were identified in about one-fourth of simplex uHM patients in which significant consequences may be hidden under a classic myopic fundus in up to half. To our knowledge, this is the first systematic genetic study on simplex uHM to date. In addition to routine care of strabismus and amblyopia, careful examination of the peripheral retina and genetic screening is warranted for patients with uHM in order to identify signs of risk for retinal detachment and other complications and provide meaningful genetic counseling.


Subject(s)
Amblyopia , Arthritis , Connective Tissue Diseases , Hearing Loss, Sensorineural , Myopia , Retinal Detachment , Humans , Child , Infant , Child, Preschool , Amblyopia/complications , Mutation , Pedigree , Myopia/genetics , Fluoresceins , Risk Factors , DNA Mutational Analysis , Frizzled Receptors/genetics , Cytoskeletal Proteins/genetics , Membrane Proteins/genetics , Tetraspanins/genetics
2.
PLoS Genet ; 17(10): e1009848, 2021 10.
Article in English | MEDLINE | ID: mdl-34662339

ABSTRACT

Patients with inherited retinal dystrophies (IRDs) were recruited from two understudied populations: Mexico and Pakistan as well as a third well-studied population of European Americans to define the genetic architecture of IRD by performing whole-genome sequencing (WGS). Whole-genome analysis was performed on 409 individuals from 108 unrelated pedigrees with IRDs. All patients underwent an ophthalmic evaluation to establish the retinal phenotype. Although the 108 pedigrees in this study had previously been examined for mutations in known IRD genes using a wide range of methodologies including targeted gene(s) or mutation(s) screening, linkage analysis and exome sequencing, the gene mutations responsible for IRD in these 108 pedigrees were not determined. WGS was performed on these pedigrees using Illumina X10 at a minimum of 30X depth. The sequence reads were mapped against hg19 followed by variant calling using GATK. The genome variants were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs) were called using GenomeSTRiP and LUMPY. We identified potential causative sequence alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes. For 57 of these pedigrees the observed genotype was consistent with the initial clinical diagnosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), including 4 pedigrees with causal variants in more than one IRD gene within all affected family members, one pedigree with intrafamilial genetic heterogeneity (different affected family members carrying causal variants in different IRD genes), one pedigree carrying a dominant causative variant present in pseudo-recessive form due to consanguinity and one pedigree with a de-novo variant in the affected family member. Combined atypical and large structural variants contributed to about 20% of cases. Among the novel mutations, 75% were detected in Mexican and 50% found in European American pedigrees and have not been reported in any other population while only 20% were detected in Pakistani pedigrees and were not previously reported. The remaining novel IRD causative variants were listed in gnomAD but were found to be very rare and population specific. Mutations in known IRD associated genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European American pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathology in these three populations was similar to that observed in other populations worldwide. This study revealed a spectrum of mutations contributing to IRD in three populations, identified a large proportion of novel potentially causative variants that are specific to the corresponding population or not reported in gnomAD and shed light on the genetic architecture of IRD in these diverse global populations.


Subject(s)
Ethnicity/genetics , Retinal Degeneration/genetics , Consanguinity , DNA Mutational Analysis/methods , Exome/genetics , Eye Proteins/genetics , Female , Genetic Association Studies/methods , Genetic Linkage/genetics , Genotype , Humans , Male , Mexico , Mutation/genetics , Pakistan , Pedigree , Retina/pathology , Exome Sequencing/methods , Whole Genome Sequencing/methods
3.
Biochemistry ; 62(12): 1864-1877, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37184593

ABSTRACT

The γ-crystallins are highly expressed structural lens proteins comprising four Greek key motifs arranged in two domains. Their globular structure and short-range spatial ordering are essential for lens transparency. Aromatic residues play a vital role in stabilizing Greek key folds by forming Greek key or non-Greek key pairs or tyrosine corners. We investigated the effects of the cataractogenic Y46D mutation in the second Greek key pair (Y46-Y51) of human γC-crystallin on its stability and aggregation. Wild-type and Y46D mutant human γC-crystallin were overexpressed in E. coli BL-21(DE3) PLysS cells, purified using ion-exchange and size-exclusion chromatography, and analyzed by fluorescence spectroscopy and circular dichroism spectroscopy. The Y46D mutation does not affect the γC-crystallin backbone conformation under benign conditions but alters the tryptophan microenvironment, exposing hydrophobic residues to the surface. The Y46D mutant undergoes a three-state transition under thermal stress with midpoints of 54.6 and 67.7 °C while the wild type shows a two-state transition with a midpoint of 77.6 °C. The Y46D mutant also shows a three-state transition under GuHCl stress with Cm values of 0.9 and 2.1 M while the wild type shows a two-state transition with a Cm of 2.4 M GuHCl. Mutant but not wild-type γC-crystallin forms light scattering particles upon heating at 65 °C. Overall, the Y46D CRYGS mutation leaves the protein fold intact under benign conditions but destabilizes the molecule by altering the tryptophan microenvironment and exposing hydrophobic residues to its surface, thus increasing its susceptibility to thermal and chemical stress with resultant self-aggregation, light scattering, and cataract.


Subject(s)
Cataract , gamma-Crystallins , Humans , gamma-Crystallins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Tryptophan/genetics , Cataract/genetics , Cataract/metabolism , Mutation
4.
Hum Genet ; 142(1): 103-123, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36129575

ABSTRACT

Mutations in myelin regulatory factor (MYRF), a gene mapped to 11q12-q13.3, are responsible for autosomal dominant high hyperopia and seem to be associated with angle closure glaucoma, which is one of the leading causes of irreversible blindness worldwide. Whether there is a causal link from the MYRF mutations to the pathogenesis of primary angle-closure glaucoma (PACG) remains unclear at this time. Six truncation mutations, including five novel and one previously reported, in MYRF are identified in seven new probands with hyperopia, of whom all six adults have glaucoma, further confirming the association of MYRF mutations with PACG. Immunofluorescence microscopy demonstrates enriched expression of MYRF in the ciliary body and ganglion cell layer in humans and mice. Myrfmut/+ mice have elevated IOP and fewer ganglion cells along with thinner retinal nerve fiber layer with ganglion cell layer than wild-type. Transcriptome sequencing of Myrfmut/+ retinas shows downregulation of Dnmt3a, a gene previously associated with PACG. Co-immunoprecipitation demonstrates a physical association of DNMT3A with MYRF. DNA methylation sequencing identifies several glaucoma-related cell events in Myrfmut/+ retinas. The interaction between MYRF and DNMT3A underlies MYRF-associated PACG and provides clues for pursuing further investigation into the pathogenesis of PACG and therapeutic target.


Subject(s)
Eye Diseases, Hereditary , Glaucoma, Angle-Closure , Hyperopia , Humans , Adult , Mice , Animals , Hyperopia/genetics , Glaucoma, Angle-Closure/genetics , Glaucoma, Angle-Closure/complications , Mutation , Eye Diseases, Hereditary/genetics , Transcription Factors/genetics , Intraocular Pressure/genetics
5.
Retina ; 43(4): 649-658, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36729825

ABSTRACT

PURPOSE: To characterize the clinical features of macular neovascularization (MNV) secondary to Bietti crystalline dystrophy. METHODS: The imaging data of 157 eyes in 79 patients with Bietti crystalline dystrophy were retrospectively reviewed. 12 individuals (19 eyes) were found to have MNVs. Multimodal retinal imaging was used to evaluate the features of MNVs and the primary chorioretinopathy. RESULTS: The MNV lesions were shown as typical type 2 MNVs with subretinal hyperreflective material (SHRM), and usually detected along the borders of the retinal pigment epithelium/choriocapillaris dropout. The active MNVs were noted in earlier stages of Bietti crystalline dystrophy, while the activity was observed to be reduced in advanced cases. On spectral domain optical coherence tomography, the outer retinal structures were demonstrated to be partially preserved above the SHRMs compared with the extensive atrophy contiguously. Fibrotic scaring of the MNVs was commonly observed and arteriolarization was usually shown within the scars. CONCLUSION: MNV was demonstrated to be a common complication secondary to Bietti crystalline dystrophy. The lesions were typical type 2 MNV of varied activities possibly associated with the degrees of the primary degeneration. Choriocapillaris hypoperfusion may participate in MNV development.


Subject(s)
Retinal Diseases , Humans , Retrospective Studies , Fluorescein Angiography/methods , Retinal Diseases/diagnosis , Neovascularization, Pathologic , Tomography, Optical Coherence/methods , Multimodal Imaging
6.
PLoS Genet ; 16(6): e1008869, 2020 06.
Article in English | MEDLINE | ID: mdl-32569302

ABSTRACT

We investigate mutations in trß2, a splice variant of thrb, identifying changes in function, structure, and behavior in larval and adult zebrafish retinas. Two N-terminus CRISPR mutants were identified. The first is a 6BP+1 insertion deletion frameshift resulting in a truncated protein. The second is a 3BP in frame deletion with intact binding domains. ERG recordings of isolated cone signals showed that the 6BP+1 mutants did not respond to red wavelengths of light while the 3BP mutants did respond. 6BP+1 mutants lacked optomotor and optokinetic responses to red/black and green/black contrasts. Both larval and adult 6BP+1 mutants exhibit a loss of red-cone contribution to the ERG and an increase in UV-cone contribution. Transgenic reporters show loss of cone trß2 activation in the 6BP+1 mutant but increase in the density of cones with active blue, green, and UV opsin genes. Antibody reactivity for red-cone LWS1 and LWS2 opsin was absent in the 6BP+1 mutant, as was reactivity for arrestin3a. Our results confirm a critical role for trß2 in long-wavelength cone development.


Subject(s)
Color Vision/genetics , Gene Expression Regulation, Developmental , Genes, erbA/genetics , Retina/growth & development , Thyroid Hormone Receptors beta/genetics , Animals , Animals, Genetically Modified , Cell Differentiation/genetics , Cone Opsins/genetics , Cone Opsins/metabolism , Frameshift Mutation , INDEL Mutation , Larva , Models, Animal , Photoreceptor Cells, Invertebrate/pathology , Retina/cytology , Retina/pathology , Sequence Deletion , Trans-Activators/genetics , Trans-Activators/metabolism , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
7.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762633

ABSTRACT

Aromatic residues forming tyrosine corners within Greek key motifs are critical for the folding, stability, and order of ßγ-crystallins and thus lens transparency. To delineate how a double amino acid substitution in an N-terminal-domain tyrosine corner of the CRYGS mutant p.F10_Y11delinsLN causes juvenile autosomal dominant cortical lamellar cataracts, human γS-crystallin c-DNA was cloned into pET-20b (+) and a p.F10_Y11delinsLN mutant was generated via site-directed mutagenesis, overexpressed, and purified using ion-exchange and size-exclusion chromatography. Structure, stability, and aggregation properties in solution under thermal and chemical stress were determined using spectrofluorimetry and circular dichroism. In benign conditions, the p.F10_Y11delinsLN mutation does not affect the protein backbone but alters its tryptophan microenvironment slightly. The mutant is less stable to thermal and GuHCl-induced stress, undergoing a two-state transition with a midpoint of 60.4 °C (wild type 73.1 °C) under thermal stress and exhibiting a three-state transition with midpoints of 1.25 and 2.59 M GuHCl (wild type: two-state transition with Cm = 2.72 M GuHCl). The mutant self-aggregates upon heating at 60 °C, which is inhibited by α-crystallin and reducing agents. Thus, the F10_Y11delinsLN mutation in human γS-crystallin impairs the protein's tryptophan microenvironment, weakening its stability under thermal and chemical stress, resulting in self-aggregation, lens opacification, and cataract.


Subject(s)
Cataract , gamma-Crystallins , Humans , gamma-Crystallins/chemistry , Tryptophan/genetics , Cataract/genetics , Cataract/metabolism , Mutation , Tyrosine/genetics
8.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361898

ABSTRACT

Bietti crystalline corneo-retinal dystrophy (BCD) is an autosomal recessive inherited retinal dystrophy characterized by multiple shimmering yellow-white deposits in the posterior pole of the retina in association with atrophy of the retinal pigment epithelium (RPE), pigment clumps, and choroidal atrophy and sclerosis. Blindness and severe visual damage are common in late-stage BCD patients. We generated a Cyp4v3 knockout mouse model to investigate the pathogenesis of BCD. This model exhibits decreased RPE numbers and signs of inflammation response in the retina. Rod photoreceptors were vulnerable to light-induced injury, showing increased deposits through fundoscopy, a decrease in thickness and a loss of cells in the ONL, and the degeneration of rod photoreceptors. These results suggest that an inflammatory response might be an integral part of the pathophysiology of BCD, suggesting that it might be reasonable for BCD patients to avoid strong light, and the results provide a useful model for evaluating the effects of therapeutic approaches.


Subject(s)
Retinal Diseases , Retinal Dystrophies , Mice , Animals , Cytochrome P450 Family 4/genetics , Mutation , Retinal Diseases/pathology , Disease Models, Animal , Atrophy
9.
Hum Genet ; 140(4): 649-666, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33389129

ABSTRACT

Peroxisomes, single-membrane intracellular organelles, play an important role in various metabolic pathways. The translocation of proteins from the cytosol to peroxisomes depends on peroxisome import receptor proteins and defects in peroxisome transport result in a wide spectrum of peroxisomal disorders. Here, we report a large consanguineous family with autosomal recessive congenital cataracts and developmental defects. Genome-wide linkage analysis localized the critical interval to chromosome 12p with a maximum two-point LOD score of 4.2 (θ = 0). Next-generation exome sequencing identified a novel homozygous missense variant (c.653 T > C; p.F218S) in peroxisomal biogenesis factor 5 (PEX5), a peroxisome import receptor protein. This missense mutation was confirmed by bidirectional Sanger sequencing. It segregated with the disease phenotype in the family and was absent in ethnically matched control chromosomes. The lens-specific knockout mice of Pex5 recapitulated the cataractous phenotype. In vitro import assays revealed a normal capacity of the mutant PEX5 to enter the peroxisomal Docking/Translocation Module (DTM) in the presence of peroxisome targeting signal 1 (PTS1) cargo protein, be monoubiquitinated and exported back into the cytosol. Importantly, the mutant PEX5 protein was unable to form a stable trimeric complex with peroxisomal biogenesis factor 7 (PEX7) and a peroxisome targeting signal 2 (PTS2) cargo protein and, therefore, failed to promote the import of PTS2 cargo proteins into peroxisomes. In conclusion, we report a novel missense mutation in PEX5 responsible for the defective import of PTS2 cargo proteins into peroxisomes resulting in congenital cataracts and developmental defects.


Subject(s)
Cataract/genetics , Mutation, Missense , Peroxisomal Targeting Signals , Peroxisome-Targeting Signal 1 Receptor/genetics , Peroxisomes/metabolism , ATP-Binding Cassette Transporters/metabolism , Animals , Biological Transport, Active , Cataract/congenital , Cataract/metabolism , Chromosomes, Human, Pair 12 , Consanguinity , Female , Genetic Linkage , Humans , Lens, Crystalline/metabolism , Male , Mice , Mice, Knockout , Peroxisome-Targeting Signal 1 Receptor/metabolism , Sequestosome-1 Protein/metabolism , Exome Sequencing
10.
Mol Genet Genomics ; 296(4): 845-862, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33884488

ABSTRACT

Autosomal dominant optic atrophy (ADOA) is an important cause of irreversible visual impairment in children and adolescents. About 60-90% of ADOA is caused by the pathogenic variants of OPA1 gene. By evaluating the pathogenicity of OPA1 variants and summarizing the relationship between the genotype and phenotype, this study aimed to provide a reference for clinical genetic test involving OPA1. Variants in OPA1 were selected from the exome sequencing results in 7092 cases of hereditary eye diseases and control groups from our in-house data. At the same time, the urine cells of some optic atrophy patients with OPA1 variants as well as their family members were collected and oxygen consumption rates (OCR) were measured in these cells to evaluate the pathogenicity of variants. As a result, 97 variants were detected, including 94 rare variants and 3 polymorphisms. And the 94 rare variants were classified into three groups: pathogenic (33), variants of uncertain significance (19), and likely benign (42). Our results indicated that the frameshift variants at the 3' terminus might be pathogenic, while the variants in exon 7 and intron 4 might be benign. The penetrance of the missense variants was higher than that of truncation variants. The OCR of cells with pathogenic OPA1 variants were significantly lower than those without pathogenic variants. In conclusion, some variants might be benign although predicted pathogenic in previous studies while some might have unknown pathogenesis. Measuring the OCR in urine cells could be used as a method to evaluate the pathogenicity of some OPA1 variants.


Subject(s)
GTP Phosphohydrolases/genetics , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/pathology , Adolescent , Adult , Case-Control Studies , Cells, Cultured , Child , Child, Preschool , DNA Mutational Analysis , Family , Female , Genetic Association Studies , Genetic Testing , Humans , Male , Mutation, Missense , Optic Atrophy, Autosomal Dominant/epidemiology , Optic Atrophy, Autosomal Dominant/urine , Pedigree , Phenotype , Polymorphism, Genetic , Urinalysis/methods , Urine/cytology , Young Adult
11.
Exp Eye Res ; 209: 108662, 2021 08.
Article in English | MEDLINE | ID: mdl-34126080

ABSTRACT

Cataract(s) is the clinical equivalent of lens opacity and is caused by light scattering either by high molecular weight protein aggregates in lens cells or disruption of the lens microarchitecture itself. Genetic mutations underlying inherited cataract can provide insight into the biological processes and pathways critical for lens homeostasis and transparency, classically including the lens crystallins, connexins, membrane proteins or components, and intermediate filament proteins. More recently, cataract genes have been expanded to include newly identified biological processes such as chaperone or protein degradation components, transcription or growth factors, channels active in the lens circulation, and collagen and extracellular matrix components. Cataracts can be classified by age, and in general congenital cataracts are caused by severe mutations resulting in major damage to lens proteins, while age related cataracts are associated with variants that merely destabilize proteins thereby increasing susceptibility to environmental insults over time. Thus there might be separate pathways to opacity for congenital and age-related cataracts whereby congenital cataracts induce the unfolded protein response (UPR) and apoptosis to destroy the lens microarchitecture, while in age related cataract high molecular weight (HMW) aggregates formed by denatured crystallins bound by α-crystallin result in light scattering without severe damage to the lens microarchitecture.


Subject(s)
Cataract/congenital , Crystallins/genetics , DNA/genetics , Lens, Crystalline/metabolism , Mutation , Animals , Cataract/genetics , Cataract/metabolism , Connexins/genetics , Connexins/metabolism , Crystallins/metabolism , DNA Mutational Analysis , Disease Models, Animal , Humans , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
12.
PLoS Genet ; 14(8): e1007504, 2018 08.
Article in English | MEDLINE | ID: mdl-30157172

ABSTRACT

We identified a homozygous missense alteration (c.75C>A, p.D25E) in CLCC1, encoding a presumptive intracellular chloride channel highly expressed in the retina, associated with autosomal recessive retinitis pigmentosa (arRP) in eight consanguineous families of Pakistani descent. The p.D25E alteration decreased CLCC1 channel function accompanied by accumulation of mutant protein in granules within the ER lumen, while siRNA knockdown of CLCC1 mRNA induced apoptosis in cultured ARPE-19 cells. TALEN KO in zebrafish was lethal 11 days post fertilization. The depressed electroretinogram (ERG) cone response and cone spectral sensitivity of 5 dpf KO zebrafish and reduced eye size, retinal thickness, and expression of rod and cone opsins could be rescued by injection of wild type CLCC1 mRNA. Clcc1+/- KO mice showed decreased ERGs and photoreceptor number. Together these results strongly suggest that intracellular chloride transport by CLCC1 is a critical process in maintaining retinal integrity, and CLCC1 is crucial for survival and function of retinal cells.


Subject(s)
Chloride Channels/genetics , Mutation, Missense , Retinitis Pigmentosa/genetics , Animals , Asian People/genetics , Cell Line , Chloride Channels/metabolism , Cytoplasm/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , HEK293 Cells , Homozygote , Humans , Mice , Mice, Knockout , Pakistan , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/diagnosis , Zebrafish/genetics , Zebrafish/metabolism
13.
Hum Genet ; 139(8): 1057-1064, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32248360

ABSTRACT

Congenital motor nystagmus (CMN) is characterized by early-onset bilateral ocular oscillations without other ocular deficits. To date, mutations in only one gene have been identified to be responsible for CMN, i.e., FRMD7 for X-linked CMN. Four loci for autosomal dominant CMN, including NYS7 (OMIM 614826), have been mapped but the causative genes have yet to be identified. NYS7 was mapped to 1q32.1 based on independent genome-wide linkage scan on two large families with CMN. In this study, mutations in all known protein-coding genes, both intronic sequence with predicted effect and coding sequence, in the linkage interval were excluded by whole-genome sequencing. Then, long-read genome sequencing based on the Nanopore platform was performed with a sample from each of the two families. Two deletions with an overlapping region of 775,699 bp, located in a region without any known protein-coding genes, were identified in the two families in the linkage region. The two deletions as well as their breakpoints were confirmed by Sanger sequencing and co-segregated with CMN in the two families. The 775,699 bp deleted region contains uncharacterized non-protein-coding expressed sequences and pseudogenes but no protein-coding genes. However, Hi-C data predicted that the deletions span two topologically associated domains and probably lead to a change in the 3D genomic architecture. These results provide novel evidence of a strong association between structural variations in non-coding genomic regions and human hereditary diseases like CMN with a potential mechanism involving changes in 3D genome architecture, which provides clues regarding the molecular pathogenicity of CMN.


Subject(s)
Genetic Diseases, X-Linked/genetics , Genomic Structural Variation/genetics , Nystagmus, Congenital/genetics , Chromosome Mapping , Cytoskeletal Proteins/genetics , Female , Gene Deletion , Genetic Linkage , Humans , Male , Membrane Proteins/genetics , Mutation , Pedigree , Whole Genome Sequencing
14.
Mol Vis ; 26: 334-344, 2020.
Article in English | MEDLINE | ID: mdl-32355443

ABSTRACT

Purpose: This study was designed to identify the pathogenic variants in three consanguineous families with congenital cataracts segregating as a recessive trait. Methods: Consanguineous families with multiple individuals manifesting congenital cataracts were ascertained. All participating members underwent an ophthalmic examination. A small aliquot of the blood sample was collected from all participating individuals, and genomic DNAs were extracted. Homozygosity-based linkage analysis was performed using short tandem repeat (STR) markers. The haplotypes were constructed with alleles of the STR markers, and the two-point logarithm of odds (LOD) scores were calculated. The candidate gene was sequenced bidirectionally to identify the disease-causing mutations. Results: Linkage analysis localized the disease interval to chromosome 3p in three families. Subsequently, bidirectional Sanger sequencing identified two novel mutations-a single base deletion resulting in a frameshift (c.3196delC; p.His1066IlefsTer10) mutation and a single base substitution resulting in a nonsense (c.4270C>T; p.Arg1424Ter) mutation-and a known missense (c.4127T>C, p.Leu1376Pro) mutation in FYCO1. All three mutations showed complete segregation with the disease phenotype and were absent in 96 ethnically matched control individuals. Conclusions: We report two novel mutations and a previously reported mutation in FYCO1 in three large consanguineous families. Taken together, mutations in FYCO1 contribute nearly 15% to the total genetic load of autosomal recessive congenital cataracts in this cohort.


Subject(s)
Cataract/genetics , Microtubule-Associated Proteins/genetics , Adult , Alleles , Cataract/blood , Cataract/congenital , Cataract/pathology , Child , Child, Preschool , Chromosomes, Human, Pair 3/genetics , Codon, Nonsense , Consanguinity , Family , Female , Frameshift Mutation , Genes, Recessive , Genetic Linkage , Genetic Predisposition to Disease , Haplotypes , Homozygote , Humans , Infant , Male , Microsatellite Repeats , Microtubule-Associated Proteins/blood , Mutation, Missense , Pakistan , Pedigree , Phylogeny
15.
Hum Mol Genet ; 26(23): 4741-4751, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28973684

ABSTRACT

The aim of this work is to identify the molecular cause of autosomal recessive early onset retinal degeneration in a consanguineous pedigree. Seventeen members of a four-generation Pakistani family were recruited and underwent a detailed ophthalmic examination. Exomes of four affected and two unaffected individuals were sequenced. Variants were filtered using exomeSuite to identify rare potentially pathogenic variants in genes expressed in the retina and/or brain and consistent with the pattern of inheritance. Effect of the variant observed in the gene Intraflagellar Transport Protein 43 (IFT43) was studied by heterologous expression in mIMCD3 and MDCK cells. Expression and sub-cellular localization of IFT43 in the retina and transiently transfected cells was examined by RT-PCR, western blot analysis, and immunohistochemistry. Affected members were diagnosed with early onset non-syndromic progressive retinal degeneration and the presence of bone spicules distributed throughout the retina at younger ages while the older affected members showed severe central choroidal atrophy. Whole-exome sequencing analysis identified a novel homozygous c.100 G > A change in IFT43 segregating with retinal degeneration and not present in ethnicity-matched controls. Immunostaining showed IFT43 localized in the photoreceptors, and to the tip of the cilia in transfected mIMCD3 and MDCK cells. The cilia in mIMCD3 and MDCK cells expressing mutant IFT43 were found to be significantly shorter (P < 0.001) than cells expressing wild-type IFT43. Our studies identified a novel homozygous mutation in the ciliary protein IFT43 as the underlying cause of recessive inherited retinal degeneration. This is the first report demonstrating the involvement of IFT43 in retinal degeneration.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Base Sequence , Consanguinity , Exome , Female , Genes, Recessive , Homozygote , Humans , Male , Mutation , Pedigree , Phenotype , Retina/metabolism , Retina/physiology , Exome Sequencing/methods
16.
Hum Genet ; 138(10): 1077-1090, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31172260

ABSTRACT

High hyperopia is a common and severe form of refractive error. Genetic factors play important roles in the development of high hyperopia but the exact gene responsible for this condition is mostly unknown. We identified a large Chinese family with autosomal dominant high hyperopia. A genome-wide linkage scan mapped the high hyperopia to chromosome 11p12-q13.3, with maximum log of the odds scores of 4.68 at theta = 0 for D11S987. Parallel whole-exome sequencing detected a novel c.3377delG (p.Gly1126Valfs*31) heterozygous mutation in the MYRF gene within the linkage interval. Whole-exome sequencing in other 121 probands with high hyperopia identified additional novel mutations in MYRF within two other families: a de novo c.3274_3275delAG (p.Leu1093Profs*22) heterozygous mutation and a c.3194+2T>C heterozygous mutation. All three mutations are located in the C-terminal region of MYRF and are predicted to result in truncation of that portion. Two patients from two of the three families developed angle-closure glaucoma. These three mutations were present in neither the ExAC database nor our in-house whole-exome sequencing data from 3280 individuals. No other truncation mutations in MYRF were detected in the 3280 individuals. Knockdown of myrf resulted in small eye size in zebrafish. These evidence all support that truncation mutations in the C-terminal region of MYRF are responsible for autosomal dominant high hyperopia in these families. Our results may provide useful clues for further understanding the functional role of the C-terminal region of this critical myelin regulatory factor, as well as the molecular pathogenesis of high hyperopia and its associated angle-closure glaucoma.


Subject(s)
Chromosomes, Human, Pair 11 , Eye Diseases, Hereditary/genetics , Genes, Dominant , Genetic Association Studies , Genetic Predisposition to Disease , Hyperopia/genetics , Membrane Proteins/genetics , Mutation , Transcription Factors/genetics , Animals , Chromosome Mapping , DNA Mutational Analysis , Eye Diseases, Hereditary/diagnosis , Female , Fluorescein Angiography , Gene Knockout Techniques , Genetic Loci , Humans , Hyperopia/diagnosis , Lod Score , Male , Pedigree , Phenotype , Zebrafish
17.
Hum Mol Genet ; 25(12): 2483-2497, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27106100

ABSTRACT

Inherited retinal dystrophies are a group of genetically heterogeneous conditions with broad phenotypic heterogeneity. We analyzed a large five-generation pedigree with early-onset recessive retinal degeneration to identify the causative mutation. Linkage analysis and homozygosity mapping combined with exome sequencing were carried out to map the disease locus and identify the p.G178R mutation in the asparaginase like-1 gene (ASRGL1), segregating with the retinal dystrophy phenotype in the study pedigree. ASRGL1 encodes an enzyme that catalyzes the hydrolysis of L-asparagine and isoaspartyl-peptides. Studies on the ASRGL1 expressed in Escherichia coli and transiently transfected mammalian cells indicated that the p.G178R mutation impairs the autocatalytic processing of this enzyme resulting in the loss of functional ASRGL1 and leaving the inactive precursor protein as a destabilized and aggregation-prone protein. A zebrafish model overexpressing the mutant hASRGL1 developed retinal abnormalities and loss of cone photoreceptors. Our studies suggest that the p.G178R mutation in ASRGL1 leads to photoreceptor degeneration resulting in progressive vision loss.


Subject(s)
Asparaginase/genetics , Autoantigens/genetics , Genetic Predisposition to Disease , Retina/pathology , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/genetics , Adult , Animals , Disease Models, Animal , Exome/genetics , Genetic Linkage , Humans , Male , Middle Aged , Mutation, Missense , Pedigree , Phenotype , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/pathology , Visual Acuity/genetics , Visual Acuity/physiology , Zebrafish/genetics
18.
Adv Exp Med Biol ; 1074: 219-228, 2018.
Article in English | MEDLINE | ID: mdl-29721947

ABSTRACT

PURPOSE: To identify the molecular basis of inherited retinal degeneration (IRD) in a familial case of Pakistani origin using whole-exome sequencing. METHODS: A thorough ophthalmic examination was completed, and genomic DNA was extracted using standard protocols. Whole exome(s) were captured with Agilent V5 + UTRs probes and sequenced on Illumina HiSeq genome analyzer. The exomeSuite software was used to filter variants, and the candidate causal variants were prioritized, examining their allele frequency and PolyPhen2, SIFT, and MutationTaster predictions. Sanger dideoxy sequencing was performed to confirm the segregation with disease phenotype and absence in ethnicity-matched control chromosomes. RESULTS: Ophthalmic examination confirmed retinal degeneration in all affected individuals that segregated as an autosomal recessive trait in the family. Whole-exome sequencing identified two homozygous missense variants: c.1304G > A; p.Arg435Gln in ZNF408 (NM_024741) and c.902G > A; p.Gly301Asp in C1QTNF4 (NM_031909). Both variants segregated with the retinal phenotype in the PKRD320 and were absent in ethnically matched control chromosomes. CONCLUSION: Whole-exome sequencing coupled with bioinformatics analysis identified potential novel variants that might be responsible for IRD.


Subject(s)
DNA-Binding Proteins/genetics , Exome Sequencing , Genes, Recessive , Polymorphism, Single Nucleotide , Retinal Degeneration/genetics , Transcription Factors/genetics , Animals , Chromosomes, Human, Pair 11/genetics , Consanguinity , Conserved Sequence , DNA Mutational Analysis , DNA-Binding Proteins/chemistry , Genetic Linkage , Humans , INDEL Mutation , Pakistan , Pedigree , Sequence Alignment , Sequence Homology, Amino Acid , Species Specificity , Transcription Factors/chemistry
19.
Adv Exp Med Biol ; 1074: 229-236, 2018.
Article in English | MEDLINE | ID: mdl-29721948

ABSTRACT

Retinal dystrophies are a phenotypically and genetically complex group of conditions. Because of this complexity, it can be challenging in many families to determine the inheritance based on pedigree analysis alone. Clinical examinations were performed and blood samples were collected from a North American (M1186) and a consanguineous Pakistani (PKRD168) pedigree affected with two different retinal dystrophies (RD). Based on the structure of the pedigrees, inheritance patterns in the families were difficult to determine. In one family, linkage analysis was performed with markers on X-chromosome. In the second family, whole-exome sequencing (WES) was performed. Subsequent Sanger sequencing of genes of interest was performed. Linkage and haplotype analysis localized the disease interval to a 70 Mb region on the X chromosome that encompassed RP2 and RPGR in M1186 . The disease haplotype segregated with RD in all individuals except for an unaffected man (IV:3) and his affected son (V:1) in this pedigree. Subsequent analysis identified a novel RPGR mutation (p. Lys857Glu fs221X) in all affected members of M1186 except V:1. This information suggests that there is an unidentified second cause of retinitis pigmentosa (RP) within the family. A novel two-base-pair deletion (p. Tyr565Ter fsX) in CHM (choroideremia) was found to segregate with RD in PKRD168. This paper highlights the challenges of interpreting family history in families with RD and reports on the identification of novel mutations in two RD families.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Eye Proteins/genetics , Retinal Degeneration/genetics , Sequence Deletion , Codon, Nonsense , Consanguinity , Female , Genes, X-Linked , Genetic Linkage , Haplotypes/genetics , Humans , Male , North America , Pakistan , Pedigree , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL