ABSTRACT
The quantum regression theorem states that the correlations of a system at two different times are governed by the same equations of motion as the single-time averages. This provides a powerful framework for the investigation of the intrinsic microscopic behaviour of physical systems by studying their macroscopic response to a controlled external perturbation. Here we experimentally demonstrate that the two-time particle number correlations in a photon Bose-Einstein condensate inside a dye-filled microcavity exhibit the same dynamics as the response of the condensate to a sudden perturbation of the dye molecule bath. This confirms the regression theorem for a quantum gas, and, moreover, demonstrates it in an unconventional form where the perturbation acts on the bath and only the condensate response is monitored. For strong perturbations, we observe nonlinear relaxation dynamics which our microscopic theory relates to the equilibrium fluctuations, thereby extending the regression theorem beyond the regime of linear response.
ABSTRACT
Quantum gases of light, such as photon or polariton condensates in optical microcavities, are collective quantum systems enabling a tailoring of dissipation from, for example, cavity loss. This characteristic makes them a tool to study dissipative phases, an emerging subject in quantum many-body physics. We experimentally demonstrate a non-Hermitian phase transition of a photon Bose-Einstein condensate to a dissipative phase characterized by a biexponential decay of the condensate's second-order coherence. The phase transition occurs because of the emergence of an exceptional point in the quantum gas. Although Bose-Einstein condensation is usually connected to lasing by a smooth crossover, the observed phase transition separates the biexponential phase from both lasing and an intermediate, oscillatory condensate regime. Our approach can be used to study a wide class of dissipative quantum phases in topological or lattice systems.