Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Proc Natl Acad Sci U S A ; 117(12): 6890-6900, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32152092

ABSTRACT

Inefficient physiological transitions are known to cause metabolic disorders. Therefore, investigating mechanisms that constitute molecular switches in a central metabolic organ like the liver becomes crucial. Specifically, upstream mechanisms that control temporal engagement of transcription factors, which are essential to mediate physiological fed-fast-refed transitions are less understood. SIRT1, a NAD+-dependent deacetylase, is pivotal in regulating hepatic gene expression and has emerged as a key therapeutic target. Despite this, if/how nutrient inputs regulate SIRT1 interactions, stability, and therefore downstream functions are still unknown. Here, we establish nutrient-dependent O-GlcNAcylation of SIRT1, within its N-terminal domain, as a crucial determinant of hepatic functions. Our findings demonstrate that during a fasted-to-refed transition, glycosylation of SIRT1 modulates its interactions with various transcription factors and a nodal cytosolic kinase involved in insulin signaling. Moreover, sustained glycosylation in the fed state causes nuclear exclusion and cytosolic ubiquitin-mediated degradation of SIRT1. This mechanism exerts spatiotemporal control over SIRT1 functions by constituting a previously unknown molecular relay. Of note, loss of SIRT1 glycosylation discomposed these interactions resulting in aberrant gene expression, mitochondrial dysfunctions, and enhanced hepatic gluconeogenesis. Expression of nonglycosylatable SIRT1 in the liver abrogated metabolic flexibility, resulting in systemic insulin resistance, hyperglycemia, and hepatic inflammation, highlighting the physiological costs associated with its overactivation. Conversely, our study also reveals that hyperglycosylation of SIRT1 is associated with aging and high-fat-induced obesity. Thus, we establish that nutrient-dependent glycosylation of SIRT1 is essential to gate its functions and maintain physiological fitness.


Subject(s)
Gluconeogenesis , Homeostasis , Hyperglycemia/prevention & control , Liver/metabolism , Protein Processing, Post-Translational , Sirtuin 1/metabolism , Acetylglucosamine/metabolism , Aging/physiology , Animals , Fasting , Glycosylation , HEK293 Cells , Humans , Hyperglycemia/metabolism , Hyperglycemia/pathology , Insulin Resistance , Liver/immunology , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Obesity/pathology , Obesity/prevention & control , Phosphorylation , Sirtuin 1/chemistry , Spatio-Temporal Analysis
2.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835430

ABSTRACT

Small regulatory RNAs (sRNAs) are now widely recognized for their role in the post-transcriptional regulation of bacterial virulence and growth. We have previously demonstrated the biogenesis and differential expression of several sRNAs in Rickettsia conorii during interactions with the human host and arthropod vector, as well as the in vitro binding of Rickettsia conorii sRNA Rc_sR42 to bicistronic cytochrome bd ubiquinol oxidase subunits I and II (cydAB) mRNA. However, the mechanism of regulation and the effect of sRNA binding on the stability of the cydAB bicistronic transcript and the expression of the cydA and cydB genes are still unknown. In this study, we determined the expression dynamics of Rc_sR42 and its cognate target genes, cydA and cydB, in mouse lung and brain tissues during R. conorii infection in vivo and employed fluorescent and reporter assays to decode the role of sRNA in regulating cognate gene transcripts. Quantitative RT-PCR revealed significant changes in the expression of sRNA and its cognate target gene transcripts during R. conorii infection in vivo, and a greater abundance of these transcripts was observed in the lungs compared to brain tissue. Interestingly, while Rc_sR42 and cydA exhibited similar patterns of change in their expression, indicating the influence of sRNA on the mRNA target, the expression of cydB was independent of sRNA expression. Further, we constructed reporter plasmids of sRNA and cydAB bicistronic mRNA to decipher the role of sRNA on CydA and CydB expression. We observed increased expression of CydA in the presence of sRNA but detected no change in CydB expression in the presence or absence of sRNA. In sum, our results demonstrate that the binding of Rc_sR42 is required for the regulation of cydA but not cydB. Further studies on understanding the influence of this interaction on the mammalian host and tick vector during R. conorii infection are in progress.


Subject(s)
RNA, Small Untranslated , Rickettsia conorii , Animals , Mice , Humans , Rickettsia conorii/genetics , Rickettsia conorii/metabolism , Gene Expression Regulation, Bacterial , Cytochromes/genetics , RNA, Messenger , RNA, Small Untranslated/genetics , Mammals/metabolism
3.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35409212

ABSTRACT

Pathogenic bacteria causing human rickettsioses, transmitted in nature by arthropod vectors, primarily infect vascular endothelial cells lining the blood vessels, resulting in 'endothelial activation' and onset of innate immune responses. Nucleotide second messengers are long presumed to be the stimulators of type I interferons, of which bacterial cyclic-di-GMP (c-di-GMP) has been implicated in multiple signaling pathways governing communication with other bacteria and host cells, yet its importance in the context of rickettsial interactions with the host has not been investigated. Here, we report that all rickettsial genomes encode a putative diguanylate cyclase pleD, responsible for the synthesis of c-di-GMP. In silico analysis suggests that although the domain architecture of PleD is apparently well-conserved among different rickettsiae, the protein composition and sequences likely vary. Interestingly, cloning and sequencing of the pleD gene from virulent (Sheila Smith) and avirulent (Iowa) strains of R. rickettsii reveals a nonsynonymous substitution, resulting in an amino acid change (methionine to isoleucine) at position 236. Additionally, a previously reported 5-bp insertion in the genomic sequence coding for pleD (NCBI accession: NC_009882) was not present in the sequence of our cloned pleD from R. rickettsii strain Sheila Smith. In vitro infection of HMECs with R. rickettsii (Sheila Smith), but not R. rickettsii (Iowa), resulted in dynamic changes in the levels of pleD up to 24 h post-infection. These findings thus provide the first evidence for the potentially important role(s) of c-di-GMP in the determination of host-cell responses to pathogenic rickettsiae. Further studies into molecular mechanisms through which rickettsial c-di-GMP might regulate pathogen virulence and host responses should uncover the contributions of this versatile bacterial second messenger in disease pathogenesis and immunity to human rickettsioses.


Subject(s)
Endothelial Cells , Rickettsia , Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Endothelial Cells/metabolism , Gene Expression Regulation, Bacterial , Humans , Rickettsia/genetics , Rickettsia rickettsii , Virulence
4.
BMC Genomics ; 21(1): 665, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32977742

ABSTRACT

BACKGROUND: Pathogenic Rickettsia species belonging to the spotted fever group are arthropod-borne, obligate intracellular bacteria which exhibit preferential tropism for host microvascular endothelium in the mammalian hosts, resulting in disease manifestations attributed primarily to endothelial damage or dysfunction. Although rickettsiae are known to undergo evolution through genomic reduction, the mechanisms by which these pathogens regulate their transcriptome to ensure survival in tick vectors and maintenance by transovarial/transstadial transmission, in contrast to their ability to cause debilitating infections in human hosts remain unknown. In this study, we compare the expression profiles of rickettsial sRNAome/transcriptome and determine the transcriptional start sites (TSSs) of R. conorii transcripts during in vitro infection of human and tick host cells. RESULTS: We performed deep sequencing on total RNA from Amblyomma americanum AAE2 cells and human microvascular endothelial cells (HMECs) infected with R. conorii. Strand-specific RNA sequencing of R. conorii transcripts revealed the expression 32 small RNAs (Rc_sR's), which were preferentially expressed above the limit of detection during tick cell infection, and confirmed the expression of Rc_sR61, sR71, and sR74 by quantitative RT-PCR. Intriguingly, a total of 305 and 132 R. conorii coding genes were differentially upregulated (> 2-fold) in AAE2 cells and HMECs, respectively. Further, enrichment for primary transcripts by treatment with Terminator 5'-Phosphate-dependent Exonuclease resulted in the identification of 3903 and 2555 transcription start sites (TSSs), including 214 and 181 primary TSSs in R. conorii during the infection to tick and human host cells, respectively. Seventy-five coding genes exhibited different TSSs depending on the host environment. Finally, we also observed differential expression of 6S RNA during host-pathogen and vector-pathogen interactions in vitro, implicating an important role for this noncoding RNA in the regulation of rickettsial transcriptome depending on the supportive host niche. CONCLUSIONS: In sum, the findings of this study authenticate the presence of novel Rc_sR's in R. conorii, reveal the first evidence for differential expression of coding transcripts and utilization of alternate transcriptional start sites depending on the host niche, and implicate a role for 6S RNA in the regulation of coding transcriptome during tripartite host-pathogen-vector interactions.


Subject(s)
Amblyomma/microbiology , Endothelial Cells/microbiology , Insect Vectors/microbiology , Rickettsia/genetics , Transcriptome , Animals , Cell Line , Cells, Cultured , Endothelium, Vascular/cytology , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Humans , Open Reading Frames , Rickettsia/metabolism , Rickettsia/pathogenicity , Transcription Initiation Site
5.
Biol Chem ; 401(2): 249-262, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31299006

ABSTRACT

Rickettsial species have independently lost several genes owing to reductive evolution while retaining those predominantly implicated in virulence, survival, and biosynthetic pathways. In this study, we have identified a previously uncharacterized Rickettsia conorii gene RC0497 as an N-acetylmuramoyl-L-alanine amidase constitutively expressed during infection of cultured human microvascular endothelial cells at the levels of both mRNA transcript and encoded protein. A homology-based search of rickettsial genomes reveals that RC0497 homologs, containing amidase_2 family and peptidoglycan binding domains, are highly conserved among the spotted fever group (SFG) rickettsiae. The recombinant RC0497 protein exhibits α-helix secondary structure, undergoes a conformational change in the presence of zinc, and exists as a dimer at higher concentrations. We have further ascertained the enzymatic activity of RC0497 via demonstration of its ability to hydrolyze Escherichia coli peptidoglycan. Confocal microscopy on E. coli expressing RC0497 and transmission immunoelectron microscopy of R. conorii revealed its localization predominantly to the cell wall, septal regions of replicating bacteria, and the membrane of vesicles pinching off the cell wall. In summary, we have identified and functionally characterized RC0497 as a peptidoglycan hydrolase unique to spotted fever rickettsiae, which may potentially serve as a novel moonlighting protein capable of performing multiple functions during host-pathogen interactions.


Subject(s)
Amidohydrolases/isolation & purification , Amidohydrolases/metabolism , Peptidoglycan/metabolism , Rickettsia conorii/enzymology , Amidohydrolases/chemistry , Peptidoglycan/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Species Specificity
6.
Int J Mol Sci ; 21(19)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003310

ABSTRACT

Attributed to the tropism for host microvascular endothelium lining the blood vessels, vascular inflammation and dysfunction represent salient features of rickettsial pathogenesis, yet the details of fundamentally important pathogen interactions with host endothelial cells (ECs) as the primary targets of infection remain poorly appreciated. Mechanistic target of rapamycin (mTOR), a serine/threonine protein kinase of the phosphatidylinositol kinase-related kinase family, assembles into two functionally distinct complexes, namely mTORC1 (Raptor) and mTORC2 (Rictor), implicated in the determination of innate immune responses to intracellular pathogens via transcriptional regulation. In the present study, we investigated activation status of mTOR and its potential contributions to host EC responses during Rickettsia rickettsii and R. conorii infection. Protein lysates from infected ECs were analyzed for threonine 421/serine 424 phosphorylation of p70 S6 kinase (p70 S6K) and that of serine 2448 on mTOR itself as established markers of mTORC1 activation. For mTORC2, we assessed phosphorylation of protein kinase B (PKB or Akt) and protein kinase C (PKC), respectively, on serine 473 and serine 657. The results suggest increased phosphorylation of p70 S6K and mTOR during Rickettsia infection of ECs as early as 3 h and persisting for up to 24 h post-infection. The steady-state levels of phospho-Akt and phospho-PKC were also increased. Infection with pathogenic rickettsiae also resulted in the formation of microtubule-associated protein 1A/1B-light chain 3 (LC3-II) puncta and increased lipidation of LC3-II, a response significantly inhibited by introduction of siRNA targeting mTORC1 into ECs. These findings thus yield first evidence for the activation of both mTORC1 and mTORC2 during EC infection in vitro with Rickettsia species and suggest that early induction of autophagy in response to intracellular infection might be regulated by this important pathway known to function as a central integrator of cellular immunity and inflammation.


Subject(s)
Immunity, Innate/genetics , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Rickettsiaceae/genetics , Spotted Fever Group Rickettsiosis/genetics , Endothelial Cells/microbiology , Endothelium/metabolism , Endothelium/microbiology , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 2/genetics , Phosphorylation/genetics , Proto-Oncogene Proteins c-akt/genetics , Rickettsiaceae/pathogenicity , Signal Transduction , Spotted Fever Group Rickettsiosis/microbiology , Spotted Fever Group Rickettsiosis/pathology , TOR Serine-Threonine Kinases/genetics , Transcription, Genetic
7.
Infect Immun ; 87(2)2019 02.
Article in English | MEDLINE | ID: mdl-30396898

ABSTRACT

Rocky Mountain spotted fever (RMSF) is a potentially fatal tick-borne disease in people and dogs. RMSF is reported in the United States and several countries in North, Central, and South America. The causative agent of this disease, Rickettsia rickettsii, is transmitted by several species of ticks, including Dermacentor andersoni, Rhipicephalus sanguineus, and Amblyomma americanum RMSF clinical signs generally include fever, headache, nausea, vomiting, muscle pain, lack of appetite, and rash. If untreated, it can quickly progress into a life-threatening illness in people and dogs, with high fatality rates ranging from 30 to 80%. While RMSF has been known for over a century, recent epidemiological data suggest that the numbers of documented cases and the fatality rates remain high in people, particularly during the last two decades in parts of North America. Currently, there are no vaccines available to prevent RMSF in either dogs or people. In this study, we investigated the efficacies of two experimental vaccines, a subunit vaccine containing two recombinant outer membrane proteins as recombinant antigens (RCA) and a whole-cell inactivated antigen vaccine (WCA), in conferring protection against virulent R. rickettsii infection challenge in a newly established canine model for RMSF. Dogs vaccinated with WCA were protected from RMSF, whereas those receiving RCA developed disease similar to that of nonvaccinated R. rickettsii-infected dogs. WCA also reduced the pathogen loads to nearly undetected levels in the blood, lungs, liver, spleen, and brain and induced bacterial antigen-specific immune responses. This study provides the first evidence of the protective ability of WCA against RMSF in dogs.


Subject(s)
Antigens, Bacterial/immunology , Dog Diseases , Rickettsia rickettsii/immunology , Rickettsial Vaccines/immunology , Rocky Mountain Spotted Fever , Animals , Bacterial Outer Membrane Proteins/immunology , Dog Diseases/immunology , Dog Diseases/microbiology , Dog Diseases/prevention & control , Dogs , Recombinant Proteins/immunology , Rocky Mountain Spotted Fever/immunology , Rocky Mountain Spotted Fever/prevention & control , Rocky Mountain Spotted Fever/veterinary
8.
J Immunol ; 194(4): 1788-95, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25595775

ABSTRACT

Candida is an opportunistic fungal pathogen that colonizes the mucosal tract of humans. Pathogenic infection occurs in the presence of conditions causing perturbations to the commensal microbiota or host immunity. Early innate immune responses by the epithelium, including antimicrobial peptides (AMPs) and cytokines, are critical for protection against overgrowth. Reduced salivary AMP levels are associated with oral Candida infection, and certain AMPs, including human ß-defensins 1-3, have direct fungicidal activity. In this study, we demonstrate that murine ß-defensin 1 (mBD1) is important for control of early mucosal Candida infection and plays a critical role in the induction of innate inflammatory mediators. Mice deficient in mBD1, as compared with wild-type mice, exhibit elevated oral and systemic fungal burdens. Neutrophil infiltration to the sites of mucosal Candida invasion, an important step in limiting fungal infection, is significantly reduced in mBD1-deficient mice. These mice also exhibit defects in the expression of other AMPs, including mBD2 and mBD4, which may have direct anti-Candida activity. We also show that mBD1 deficiency impacts the production of important antifungal inflammatory mediators, including IL-1ß, IL-6, KC, and IL-17. Collectively, these studies demonstrate a role for the mBD1 peptide in early control of Candida infection in a murine model of mucosal candidiasis, as well as in the modulation of host immunity through augmentation of leukocyte infiltration and inflammatory gene regulation.


Subject(s)
Candida albicans/immunology , Candidiasis, Oral/immunology , Immunity, Innate/immunology , Immunity, Mucosal/immunology , beta-Defensins/immunology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction
9.
Mediators Inflamm ; 2017: 3427461, 2017.
Article in English | MEDLINE | ID: mdl-29147069

ABSTRACT

Endothelial cell interactions with lipopolysaccharide (LPS) involve both activating and repressing signals resulting in pronounced alterations in their transcriptome and proteome. Noncoding RNAs are now appreciated as posttranscriptional and translational regulators of cellular signaling and responses, but their expression status and roles during endothelial interactions with LPS are not well understood. We report on the expression profile of long noncoding (lnc) RNAs of human microvascular endothelial cells in response to LPS. We have identified a total of 10,781 and 8310 lncRNA transcripts displaying either positive or negative regulation of expression, respectively, at 3 and 24 h posttreatment. A majority of LPS-induced lncRNAs are multiexonic and distributed across the genome as evidenced by their presence on all chromosomes. Present among these are a total of 44 lncRNAs with known regulatory functions, of which 41 multiexonic lncRNAs have multiple splice variants. We have further validated splice variant-specific expression of EGO (NONHSAT087634) and HOTAIRM1 (NONHSAT119666) at 3 h and significant upregulation of lnc-IL7R at 24 h. This study illustrates the genome-wide regulation of endothelial lncRNA splice variants in response to LPS and provides a foundation for further investigations of differentially expressed lncRNA transcripts in endothelial responses to LPS and pathophysiology of sepsis/septic shock.


Subject(s)
Endothelial Cells/drug effects , Endothelial Cells/metabolism , Lipopolysaccharides/pharmacology , RNA, Long Noncoding/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans
10.
Int J Mol Sci ; 18(7)2017 Jul 09.
Article in English | MEDLINE | ID: mdl-28698491

ABSTRACT

MicroRNAs (miRNAs) mediate gene silencing by destabilization and/or translational repression of target mRNA. Infection of human microvascular endothelial cells as primary targets of Rickettsiarickettsii, the etiologic agent of Rocky Mountain spotted fever, triggers host responses appertaining to alterations in cellular gene expression. Microarray-based profiling of endothelial cells infected with R.rickettsii for 3 or 24 h revealed differential expression of 33 miRNAs, of which miRNAs129-5p, 200a-3p, 297, 200b-3p, and 595 were identified as the top five up-regulated miRNAs (5 to 20-fold, p ≤ 0.01) and miRNAs 301b-3p, 548a-3p, and 377-3p were down-regulated (2 to 3-fold, p ≤ 0.01). Changes in the expression of selected miRNAs were confirmed by q-RT-PCR in both in vitro and in vivo models of infection. As potential targets, expression of genes encoding NOTCH1, SMAD2, SMAD3, RIN2, SOD1, and SOD2 was either positively or negatively regulated. Using a miRNA-specific mimic or inhibitor, NOTCH1 was determined to be a target of miRNA 200a-3p in R. rickettsii-infected human dermal microvascular endothelial cells (HMECs). Predictive interactome mapping suggested the potential for miRNA-mediated modulation of regulatory gene networks underlying important host cell signaling pathways. This first demonstration of altered endothelial miRNA expression provides new insights into regulatory elements governing mechanisms of host responses and pathogenesis during human rickettsial infections.


Subject(s)
Endothelial Cells/metabolism , Endothelial Cells/microbiology , Endothelium, Vascular/metabolism , Endothelium, Vascular/microbiology , MicroRNAs/genetics , Rickettsia rickettsii/pathogenicity , Carrier Proteins/genetics , Guanine Nucleotide Exchange Factors/genetics , Humans , Receptor, Notch1/genetics , Signal Transduction/physiology , Smad2 Protein/genetics , Smad3 Protein/genetics , Superoxide Dismutase/genetics
11.
Pharm Biol ; 55(1): 1623-1630, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28424024

ABSTRACT

CONTEXT: Sida acuta Burm.f. (Malvaceae) extracts are reported to have applications against malaria, diuretic, antipyretic, nervous and urinary diseases. No fungal endophytes of S. acuta are reported. OBJECTIVE: Isolation, identification and evaluation of antibacterial, antioxidant, anticancer and haemolytic potential of fungal endophytes from the ethnomedcinal plant S. acuta. MATERIALS AND METHODS: Sida acuta stem segments were placed on PDA medium to isolate endophytic fungi. The fungus was identified by genomic DNA analysis and phylogenetic tree was constructed using ITS sequences (GenBank) to confirm species. The antibacterial efficacy of Aspergillus sulphureus MME12 ethyl acetate extract was tested against Gram-positive and Gram-negative pathogenic bacteria. DPPH free radical scavenging activity, anticancer and DNA fragmentation against EAC cells, and direct haemolytic activity (100-500 µg/mL) using human erythrocytes were determined. RESULTS AND DISCUSSION: The ethyl acetate extract of A. sulphureus (Fresen.) Wehmer (Trichocomaceae) demonstrated significant antibacterial potential against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi compared to streptomycin. MIC against test pathogens was in the range of 15.6-62.5 µg/mL. The antioxidant results revealed significant RSA from 12.43% to 62.02% (IC50 = 350.4 µg/mL, p ≤ 0.05). MME12 offered considerable inhibition of EAC proliferation (23% to 84%, IC50 = 216.7 µg/mL, p ≤ 0.05) supported by DNA fragmentation studies. The extract also offered insignificant haemolysis (5.6%) compared to Triton X-100. CONCLUSIONS: A single endophytic fungus, A. sulphureus MME12 was isolated and identified using molecular profiling. The above-mentioned findings support the pharmacological application of A. sulphureus MME12 extract and demand for purification of the active principle(s).


Subject(s)
Aspergillus/isolation & purification , Endophytes/isolation & purification , Malvaceae/microbiology , Plant Extracts/pharmacology , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antioxidants/administration & dosage , Antioxidants/isolation & purification , Antioxidants/pharmacology , Aspergillus/metabolism , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , DNA Fragmentation/drug effects , Dose-Response Relationship, Drug , Endophytes/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hemolysis/drug effects , Humans , Microbial Sensitivity Tests , Plant Extracts/administration & dosage
12.
Infect Immun ; 84(10): 3007-16, 2016 10.
Article in English | MEDLINE | ID: mdl-27481239

ABSTRACT

The CPS1 gene was identified as a virulence factor in the maize pathogen Cochliobolus heterostrophus Hypothesizing that the homologous gene in Coccidioides posadasii could be important for virulence, we created a Δcps1 deletion mutant which was unable to cause disease in three strains of mice (C57BL/6, BALB/c, or the severely immunodeficient NOD-scid,γc(null) [NSG]). Only a single colony was recovered from 1 of 60 C57BL/6 mice following intranasal infections of up to 4,400 spores. Following administration of very high doses (10,000 to 2.5 × 10(7) spores) to NSG and BALB/c mice, spherules were observed in lung sections at time points from day 3 to day 10 postinfection, but nearly all appeared degraded with infrequent endosporulation. Although the role of CPS1 in virulence is not understood, phenotypic alterations and transcription differences of at least 33 genes in the Δcps1 strain versus C. posadasii is consistent with both metabolic and regulatory functions for the gene. The in vitro phenotype of the Δcps1 strain showed slower growth of mycelia with delayed and lower spore production than C. posadasii, and in vitro spherules were smaller. Vaccination of C57BL/6 or BALB/c mice with live Δcps1 spores either intranasally, intraperitoneally, or subcutaneously resulted in over 95% survival with mean residual lung fungal burdens of <1,000 CFU from an otherwise lethal C. posadasii intranasal infection. Considering its apparently complete attenuation of virulence and the high degree of resistance to C. posadasii infection when used as a vaccine, the Δcps1 strain is a promising vaccine candidate for preventing coccidioidomycosis in humans or other animals.


Subject(s)
Coccidioides/physiology , Coccidioidomycosis/genetics , Sequence Deletion , Virulence Factors/genetics , Virulence/physiology , Animals , Coccidioides/genetics , Coccidioidomycosis/prevention & control , Disease Models, Animal , Female , Fungal Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Vaccination/methods
13.
BMC Genomics ; 16: 1075, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26679185

ABSTRACT

BACKGROUND: Rickettsia species are obligate intracellular Gram-negative pathogenic bacteria and the etiologic agents of diseases such as Rocky Mountain spotted fever (RMSF), Mediterranean spotted fever, epidemic typhus, and murine typhus. Genome sequencing revealed that R. prowazekii has ~25 % non-coding DNA, the majority of which is thought to be either "junk DNA" or pseudogenes resulting from genomic reduction. These characteristics also define other Rickettsia genomes. Bacterial small RNAs, whose biogenesis is predominantly attributed to either the intergenic regions (trans-acting) or to the antisense strand of an open reading frame (cis-acting), are now appreciated to be among the most important post-transcriptional regulators of bacterial virulence and growth. We hypothesize that intergenic regions in rickettsial species encode for small, non-coding RNAs (sRNAs) involved in the regulation of its transcriptome, leading to altered virulence and adaptation depending on the host niche. RESULTS: We employed a combination of bioinformatics and in vitro approaches to explore the presence of sRNAs in a number of species within Genus Rickettsia. Using the sRNA Identification Protocol using High-throughput Technology (SIPHT) web interface, we predicted over 1,700 small RNAs present in the intergenic regions of 16 different strains representing 13 rickettsial species. We further characterized novel sRNAs from typhus (R. prowazekii and R. typhi) and spotted fever (R. rickettsii and R. conorii) groups for their promoters and Rho-independent terminators using Bacterial Promoter Prediction Program (BPROM) and TransTermHP prediction algorithms, respectively. Strong σ70 promoters were predicted upstream of all novel small RNAs, indicating the potential for transcriptional activity. Next, we infected human microvascular endothelial cells (HMECs) with R. prowazekii for 3 h and 24 h and performed Next Generation Sequencing to experimentally validate the expression of 26 sRNA candidates predicted in R. prowazekii. Reverse transcriptase PCR was also used to further verify the expression of six putative novel sRNA candidates in R. prowazekii. CONCLUSIONS: Our results yield clear evidence for the expression of novel R. prowazekii sRNA candidates during infection of HMECs. This is the first description of novel small RNAs for a highly pathogenic species of Rickettsia, which should lead to new insights into rickettsial virulence and adaptation mechanisms.


Subject(s)
Gene Expression Regulation, Bacterial , RNA, Bacterial , RNA, Small Untranslated , Rickettsia/genetics , Base Sequence , Chromosome Mapping , Computational Biology/methods , Consensus Sequence , Genome, Bacterial , Genomics/methods , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Nucleotide Motifs , Position-Specific Scoring Matrices , Promoter Regions, Genetic , RNA Interference , Reproducibility of Results
14.
J Fungi (Basel) ; 10(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38392787

ABSTRACT

The escalating global food demand driven by a gradually expanding human population necessitates strategies to improve agricultural productivity favorably and mitigate crop yield loss caused by various stressors (biotic and abiotic). Biotic stresses are caused by phytopathogens, pests, and nematodes, along with abiotic stresses like salt, heat, drought, and heavy metals, which pose serious risks to food security and agricultural productivity. Presently, the traditional methods relying on synthetic chemicals have led to ecological damage through unintended impacts on non-target organisms and the emergence of microbes that are resistant to them. Therefore, addressing these challenges is essential for economic, environmental, and public health concerns. The present review supports sustainable alternatives, emphasizing the possible application of fungal endophytes as innovative and eco-friendly tools in plant stress management. Fungal endophytes demonstrate capabilities for managing plants against biotic and abiotic stresses via the direct or indirect enhancement of plants' innate immunity. Moreover, they contribute to elevated photosynthesis rates, stimulate plant growth, facilitate nutrient mineralization, and produce bioactive compounds, hormones, and enzymes, ultimately improving overall productivity and plant stress resistance. In conclusion, harnessing the potentiality of fungal endophytes represents a promising approach toward the sustainability of agricultural practices, offering effective alternative solutions to reduce reliance on chemical treatments and address the challenges posed by biotic and abiotic stresses. This approach ensures long-term food security and promotes environmental health and economic viability in agriculture.

15.
J Pharm Bioallied Sci ; 16(Suppl 2): S1281-S1286, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882725

ABSTRACT

Colorectal cancer (CRC) is a pervasive malignancy that stands as a prominent contributor to global cancer-related mortality. Among the numerous causative factors, the overexpression of human epidermal growth factor receptor 2 (HER2) is notably linked to CRC progression. Acronychia (A.) pedunculata has a longstanding history in folk medicine due to its multifaceted medicinal attributes. This study aimed to assess the potential of specific bioactive compounds derived from A. pedunculata for their inhibition of HER2 in CRC, utilizing in silico analysis. The compounds were systematically evaluated through a series of computational analyses. Drug-likeness assessment, pharmacokinetic evaluation, and toxicity analysis were conducted. Molecular docking studies were performed to investigate binding affinities with the HER2 target. Additionally, bioavailability radar analysis was employed to predict oral bioavailability, while molecular target prediction provided insights into potential protein interactions. All 12 compounds demonstrated favorable drug-likeness properties and adherence to Lipinski's rule of five, indicative of the potential for good oral bioavailability. Four compounds were found to have no toxicological endpoints. Molecular docking revealed two compounds, namely caryophylla-4 (14), 8 (15)-dien-5alpha-ol and (-)-globulol, which showed promising binding affinities between several compounds and HER2. From this study, two leads were identified from A. pedunculata. Further experimental studies are required to validate the action of leads.

16.
Microorganisms ; 12(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38399700

ABSTRACT

Rickettsia rickettsii is an obligate intracellular pathogen that primarily targets endothelial cells (ECs), leading to vascular inflammation and dysfunction. Mechanistic target of rapamycin (mTOR) regulates several cellular processes that directly affect host immune responses to bacterial pathogens. Here, we infected ECs with two R. rickettsii strains, avirulent (Iowa) and highly virulent Sheila Smith (SS) to identify differences in the kinetics and/or intensity of mTOR activation to establish a correlation between mTOR response and bacterial virulence. Endothelial mTOR activation with the highly virulent SS strain was significantly higher than with the avirulent Iowa strain. Similarly, there was increased LC3-II lipidation with the virulent SS strain compared with the avirulent Iowa strain of R. rickettsii. mTOR inhibitors rapamycin and Torin2 significantly increased bacterial growth and replication in the ECs, as evidenced by a more than six-fold increase in rickettsia copy numbers at 48 h post-infection. Further, the knockdown of mTOR with Raptor and Rictor siRNA resulted in a higher rickettsial copy number and the altered expression of the pro-inflammatory cytokines interleukin (IL)-1α, IL-6, and IL-8. These results are the first to reveal that endothelial mTOR activation and the early induction of autophagy might be governed by bacterial virulence and have established the mTOR pathway as an important regulator of endothelial inflammation, host immunity, and microbial replication.

17.
PLoS Negl Trop Dis ; 17(9): e0011306, 2023 09.
Article in English | MEDLINE | ID: mdl-37747880

ABSTRACT

The composition of the microbiome is shaped by both environment and host in most organisms, but in the mosquito Aedes aegypti the role of the host in shaping the microbiome is poorly understood. Previously, we had shown that four lines of Ae. aegypti harbored different microbiomes when reared in the same insectary under identical conditions. To determine whether these lines differed from each other across time and in different environments, we characterized the microbiome of the same four lines of Ae. aegypti reared in the original insectary and at another institution. While it was clear that the environment influenced the microbiomes of these lines, we did still observe distinct differences in the microbiome between lines within each insectary. Clear differences were observed in alpha diversity, beta diversity, and abundance of specific bacterial taxa. To determine if the line specific differences in the microbiome were maintained across environments, pair-wise differential abundances of taxa was compared between insectaries. Lines were most similar to other lines from the same insectary than to the same line reared in a different insectary. Additionally, relatively few differentially abundant taxa identified between pairs of lines were shared across insectaries, indicating that line specific properties of the microbiome are not conserved across environments, or that there were distinct microbiota within each insectary. Overall, these results demonstrate that mosquito lines under the same environmental conditions have different microbiomes across microbially- diverse environments and host by microbe interactions affecting microbiome composition and abundance is dependent on environmentally available bacteria.


Subject(s)
Aedes , Microbiota , Animals , Aedes/microbiology , Microbial Interactions , Bacteria/genetics , Mosquito Vectors , RNA, Ribosomal, 16S
18.
Indian J Dent Res ; 33(4): 363-366, 2022.
Article in English | MEDLINE | ID: mdl-37005997

ABSTRACT

Background: Recession is a mucogingival condition affecting teeth causing hypersensitivity. Although many techniques are there for recession coverage, semilunar vestibular incision technique (SVIT) is a novel procedure for management of multiple gingival recession in maxillary teeth. Aim: To evaluate the efficacy of root coverage in maxillary teeth with multiple gingival recession using SVIT. Methodology: Twenty systemically healthy patients were recruited with Miller's class I and II gingival recessions in maxillary teeth. Parameters such as recession height (RH), recession weight (RW), avascular surface area (ASA), width of keratinized gingiva (WKG), width of attached gingiva (WAG), and clinical attachment level (CAL) were measured at baseline three and six months post-surgery. Results: The outcome measures were statistically significant at baseline, three and six months. A reduction of 86% was achieved in terms of RH and RW. Gain in WKG and WAG as achieved at six-month follow-up was 31.5% and 55%, respectively. An 87% decrease in ASA was obtained and reduction in CAL was 82.4%. Between three and six months there was a significant increase in WAG. Conclusion: SVIT results in improved measures of attached gingiva on six-month follow-up.


Subject(s)
Gingival Recession , Humans , Gingival Recession/surgery , Treatment Outcome , Connective Tissue , Tooth Root/surgery , Surgical Flaps , Gingiva
19.
Vaccines (Basel) ; 10(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36298491

ABSTRACT

Outbreaks of life-threatening Rocky Mountain spotted fever in humans and dogs associated with a canine-tick maintenance cycle constitute an important One Health opportunity. The reality of the problem has been observed strikingly in Mexico, Brazil, Colombia, and Native American tribal lands in Arizona. The brown dog tick, Rhipicephalus sanguineus sensu lato, acquires the rickettsia from bacteremic dogs and can maintain the bacterium transtadially to the next tick stage. The subsequent adult tick can then transmit infection to a new host, as shown by guinea pig models. These brown dog ticks maintain spotted fever group rickettsiae transovarially through many generations, thus serving as both vector and reservoir. Vaccine containing whole-killed R. rickettsii does not stimulate sufficient immunity. Studies of Rickettsia subunit antigens have demonstrated that conformationally preserved outer-membrane autotransporter proteins A and B are the leading vaccine candidates. The possibility of a potentially safe and effective live attenuated vaccine has only begun to be explored as gene knockout methods are applied to these obligately intracellular pathogens.

20.
Biochem Biophys Rep ; 25: 100897, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33490646

ABSTRACT

Cytokines and chemokines trigger complex intracellular signaling through specific receptors to mediate immune cell recruitment and activation at the sites of infection. CX3CL1 (Fractalkine), a membrane-bound chemokine also capable of facilitating intercellular interactions as an adhesion molecule, contributes to host immune responses by virtue of its chemoattractant functions. Published studies have documented increased CX3CL1 expression in target tissues in a murine model of spotted fever rickettsiosis temporally corresponding to infiltration of macrophages and recovery from infection. Because pathogenic rickettsiae primarily target vascular endothelium in the mammalian hosts, we have now determined CX3CL1 mRNA and protein expression in cultured human microvascular endothelial cells (HMECs) infected in vitro with Rickettsia rickettsii. Our findings reveal 15.5 ± 4.0-fold and 12.3 ± 2.3-fold increase in Cx3cl1 mRNA expression at 3 h and 24 h post-infection, coinciding with higher steady-state levels of the corresponding protein in comparison to uninfected HMECs. Since CX3CL1 is a validated target of microRNA (miR)-424-5p (miR-424) and our earlier findings demonstrated robust down-regulation of miR-424 in R. rickettsii-infected HMECs, we further explored the possibility of regulation of CX3CL1 expression during rickettsial infection by miR-424. As expected, R. rickettsii infection resulted in 87 ± 5% reduction in miR-424 expression in host HMECs. Interestingly, a miR-424 mimic downregulated R. rickettsii-induced expression of CX3CL1, whereas an inhibitor of miR-424 yielded a converse up-regulatory effect, suggesting miR-424-mediated regulation of CX3CL1 during infection. Together, these findings provide the first evidence for the roles of a host microRNA in the regulation of an important bifunctional chemokine governing innate immune responses to pathogenic rickettsiae.

SELECTION OF CITATIONS
SEARCH DETAIL