Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Rev Med Virol ; 31(1): 1-12, 2021 01.
Article in English | MEDLINE | ID: mdl-32803835

ABSTRACT

The Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in late 2012 in Saudi Arabia. For this study, we conducted a large-scale comparative genome study of MERS-CoV from both human and dromedary camels from 2012 to 2019 to map any genetic changes that emerged in the past 8 years. We downloaded 1309 submissions, including 308 full-length genome sequences of MERS-CoV available in GenBank from 2012 to 2019. We used bioinformatics tools to describe the genome structure and organization of the virus and to map the most important motifs within various regions/genes throughout the genome over the past 8 years. We also monitored variations/mutations among these sequences since its emergence. Our phylogenetic analyses suggest that the cluster within African camels is derived by S gene. We identified some prominent motifs within the ORF1ab, S gene and ORF-5, which may be used for barcoding the African camel lineages of MERS-CoV. Furthermore, we mapped some sequence patterns that support the zoonotic origin of the virus from dromedary camels. Other sequences identified selection pressures, particularly within the N gene and the 5' UTR. Further studies are required for careful monitoring of the MERS-CoV genome to identify any potential significant mutations in the future.


Subject(s)
Camelus/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Middle East Respiratory Syndrome Coronavirus/genetics , Animals , Coronavirus Infections/transmission , DNA Barcoding, Taxonomic , Genome, Viral/genetics , Humans , Polyproteins/genetics , Saudi Arabia/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics
2.
J Med Virol ; 93(9): 5328-5332, 2021 09.
Article in English | MEDLINE | ID: mdl-33851740

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is one of the recently identified zoonotic coronaviruses. The one-hump camels are believed to play important roles in the evolution and transmission of the virus. The animal-to-animal, as well as the animal-to-human transmission in the context of MERS-CoV infection, were reported. The camels shed the virus in some of their secretions, especially the nasal tract. However, there are many aspects of the transmission cycle of the virus from animals to humans that are still not fully understood. Rodents played important roles in the transmission of many pathogens, including viruses and bacteria. They have been implicated in the evolution of many human coronaviruses, especially HCoV-OC43 and HCoV-HKU1. However, the role of rodents in the transmission of MERS-CoV still requires more exploration. To achieve this goal, we identified MERS-CoV that naturally infected dromedary camel by molecular surveillance. We captured 15 of the common rodents (rats, mice, and jerboa) sharing the habitat with these animals. We collected both oral and rectal swabs from these animals and then tested them by the commercial MERS-CoV real-time-PCR kits using two targets. Despite the detection of the viral shedding in the nasal swabs of some of the dromedary camels, none of the rodents tested positive for the virus during the tenure of this study. We concluded that these species of rodents did not harbor the virus and are most unlikely to contribute to the transmission of the MERS-CoV. However, further large-scale studies are required to confirm the potential roles of rodents in the context of the MERS-CoV transmission cycle, if any.


Subject(s)
Camelus/virology , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Epidemiological Monitoring/veterinary , RNA, Viral/genetics , Animals , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Nasal Cavity/virology , Rats , Real-Time Polymerase Chain Reaction , Rectum/virology , Rodentia/virology , Saudi Arabia/epidemiology
3.
Emerg Infect Dis ; 26(12): 3089-3091, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33219804

ABSTRACT

We detected Middle East respiratory syndrome coronavirus (MERS-CoV) RNA in 305/1,131 (27%) camels tested at an abattoir in Al Hasa, Eastern Province, Saudi Arabia, during January 2016-March 2018. We characterized 48 full-length MERS-CoV genomes and noted the viruses clustered in MERS-CoV lineage 5 clade B.


Subject(s)
Abattoirs , Camelus , Coronavirus Infections/veterinary , Middle East Respiratory Syndrome Coronavirus/genetics , Phylogeny , Aging , Animals , Antibodies, Viral/analysis , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Female , Male , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/isolation & purification , RNA, Viral/analysis , Saudi Arabia/epidemiology
4.
Epidemiol Infect ; 148: e247, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33050973

ABSTRACT

Dromedary camels remain the currently identified reservoir for the Middle East respiratory syndrome coronavirus (MERS-CoV). The virus is released in the secretions of the infected camels, especially the nasal tract. The virus shedding curve through the nasal secretions was studied. Although human transmission of the virus through the respiratory tract of close contact people with dromedary reported previously, the exact mechanism of transmission is still largely unknown. The main goal of this study was to check the possibility of MERS-CoV shedding in the exhaled air of the infected camels. To achieve this goal, we conducted a follow-up study in one of the dromedary camel herds, December 2018-April 2019. We tested nasal swabs, breath samples from animals within this herd by the real-time PCR. Our results showed that some of the tested nasal swabs and breath were positive from 24 March 2019 until 7 April 2019. The phylogenetic analysis of the obtained S and N gene sequences revealed the detected viruses are clustering together with some human and camel samples from the eastern region, especially from Al-Hufuf city, as well as some samples from Qatar and Jordon. These results are clearly showing the possibility of shedding of the virus in the breath of the infected camels. This could explain, at least in part, the mechanism of transmission of MERS-CoV from animals to humans. This study is confirming the shedding of MERS-CoV in the exhaled air of the infected camels. Further studies are needed for a better understanding of the MERS-CoV.


Subject(s)
Camelus/virology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Animals , Breath Tests , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Nose/virology , Phylogeny , RNA, Viral/analysis , Virus Shedding
5.
PLoS Pathog ; 10(4): e1004070, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24722419

ABSTRACT

Intercalated disks (ICDs) are substantial connections maintaining cardiac structures and mediating signal communications among cardiomyocytes. Deficiency in ICD components such as desmosomes, fascia adherens and gap junctions leads to heart dysfunction. Coxsackievirus B3 (CVB3) infection induces cardiac failure but its pathogenic effect on ICDs is unclear. Here we show that CVB3-induced miR-21 expression affects ICD structure, i.e., upregulated miR-21 targets YOD1, a deubiquitinating enzyme, to enhance the K48-linked ubiquitination and degradation of desmin, resulting in disruption of desmosomes. Inhibition of miR-21 preserves desmin during CVB3 infection. Treatment with proteasome inhibitors blocks miR-21-mediated desmin degradation. Transfection of miR-21 or knockdown of YOD1 triggers co-localization of desmin with proteasomes. We also identified K108 and K406 as important sites for desmin ubiquintination and degradation. In addition, miR-21 directly targets vinculin, leading to disturbed fascia adherens evidenced by the suppression and disorientation of pan-cadherin and α-E-catenin proteins, two fascia adherens-components. Our findings suggest a new mechanism of miR-21 in modulating cell-cell interactions of cardiomyocytes during CVB3 infection.


Subject(s)
Cell Communication , Enterovirus B, Human/metabolism , Enterovirus Infections/metabolism , Gene Expression Regulation , MicroRNAs/biosynthesis , Myocytes, Cardiac/metabolism , Animals , Desmin/genetics , Desmin/metabolism , Enterovirus B, Human/genetics , Enterovirus Infections/genetics , Enterovirus Infections/pathology , Gene Knockdown Techniques , Male , Mice , MicroRNAs/genetics , Myocytes, Cardiac/pathology , Myocytes, Cardiac/virology , Proteolysis , Ubiquitination/genetics
6.
Cell Mol Life Sci ; 70(23): 4631-44, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23811937

ABSTRACT

Coxsackievirus B3 (CVB3) is one of the most prevalent causes of viral myocarditis and is associated with many other pathological conditions. CVB3 replication relies on host cellular machineries and causes direct damage to host cells. MicroRNAs have been found to regulate viral infections but their roles in CVB3 infection are still poorly understood. Here we describe a novel mechanism by which miR-126 regulates two signal pathways essential for CVB3 replication. We found that CVB3-induced ERK1/2 activation triggered the phosphorylation of ETS-1 and ETS-2 transcription factors, which induced miR-126 upregulation. By using both microRNA mimics and inhibitors, we proved that the upregulated miR-126 suppressed sprouty-related, EVH1 domain containing 1 (SPRED1) and in turn enhanced ERK1/2 activation. This positive feedback loop of ERK1/2-miR-126-ERK1/2 promoted CVB3 replication. Meanwhile, miR-126 expression stimulated GSK-3ß activity and induced degradation of ß-catenin through suppressing LRP6 and WRCH1, two newly identified targets in the Wnt/ß-catenin pathway, which sensitized the cells to virus-induced cell death and increased viral progeny release to initiate new infections. Our results demonstrate that upregulated miR-126 upon CVB3 infection targets SPRED1, LRP6, and WRCH1 genes, mediating cross-talk between ERK1/2 and Wnt/ß-catenin pathways, and thus promoting viral replication and contributes to the viral cytopathogenicity.


Subject(s)
Enterovirus B, Human/genetics , MAP Kinase Signaling System/genetics , MicroRNAs/genetics , Virus Replication , Wnt Signaling Pathway/genetics , beta Catenin/genetics , 3' Untranslated Regions/genetics , Adaptor Proteins, Signal Transducing , Base Sequence , Blotting, Western , Cell Line , Cells, Cultured , Enterovirus B, Human/physiology , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/metabolism , Phosphorylation , Proto-Oncogene Protein c-ets-1/genetics , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Protein c-ets-2/genetics , Proto-Oncogene Protein c-ets-2/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Nucleic Acid , beta Catenin/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
7.
Cell Mol Life Sci ; 70(2): 277-91, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22842794

ABSTRACT

Coxsackievirus B3 (CVB3) is the primary causal agent of viral myocarditis. During infection, it hijacks host genes to favour its own replication. However, the underlying mechanism is still unclear. Although the viral receptor is an important factor for viral infectivity, other factors such as microRNAs (miRNA) may also play an essential role in its replication after host cell entry. miRNAs are post-transcriptional gene regulators involved in various fundamental biological processes as well as in diseases. To identify miRNAs involved in CVB3 pathogenesis, we performed microarray analysis of miRNAs using CVB3-infected murine hearts and identified miR-203 as one of the most upregulated candidates. We found that miR-203 upregulation is through the activation of protein kinase C/transcription factor AP-1 pathway. We further identified zinc finger protein-148 (ZFP-148), a transcription factor, as a novel target of miR-203. Ectopic expression of miR-203 downregulated ZFP-148 translation, increased cell viability and subsequently enhanced CVB3 replication. Silencing of ZFP-148 by siRNA showed similar effects on CVB3 replication. Finally, analyses of the signalling cascade downstream of ZFP-148 revealed that miR-203-induced suppression of ZFP-148 differentially regulated the expression of prosurvival and proapoptotic genes of the Bcl-2 family proteins as well as the cell cycle regulators. This altered gene expression promoted cell survival and growth, which provided a favourable environment for CVB3 replication, contributing to the further damage of the infected cells. Taken together, this study identified a novel target of miR-203 and revealed, for the first time, the molecular link between miR-203/ZFP-148 and the pathogenesis of CVB3.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Enterovirus B, Human/physiology , MicroRNAs/metabolism , Myocarditis/virology , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Cell Survival , Coxsackievirus Infections/genetics , Coxsackievirus Infections/pathology , Enterovirus B, Human/pathogenicity , Gene Expression Regulation , Genes, bcl-2 , Heart/virology , Mice , MicroRNAs/biosynthesis , Oligonucleotide Array Sequence Analysis , Protein Kinase C/metabolism , RNA Interference , RNA, Small Interfering , Signal Transduction/genetics , Transcription Factor AP-1/metabolism , Up-Regulation , Virus Replication/genetics
8.
Microorganisms ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38792727

ABSTRACT

Bovine coronavirus (BCoV) infection causes significant economic loss to the dairy and beef industries worldwide. BCoV exhibits dual tropism, infecting the respiratory and enteric tracts of cattle. The enteric BCoV isolates could also induce respiratory manifestations under certain circumstances. However, the mechanism of this dual tropism of BCoV infection has not yet been studied well. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a dual role in virus infection, mediating virus or modulating host immune regulatory genes through complex virus-host cell interactions. However, their role in BCoV infection remains unclear. This study aims to identify bovine miRNAs crucial for regulating virus-host interaction, influencing tissue tropism, and explore their potential as biomarkers and therapeutic agents against BCoV. We downloaded 18 full-length BCoV genomes (10 enteric and eight respiratory) from GenBank. We applied several bioinformatic tools to study the host miRNAs targeting various regions in the viral genome. We used the criteria of differential targeting between the enteric/respiratory isolates to identify some critical miRNAs as biological markers for BCoV infection. Using various online bioinformatic tools, we also searched for host miRNA target genes involved in BCoV infection, immune evasion, and regulation. Our results show that four bovine miRNAs (miR-2375, miR-193a-3p, miR-12059, and miR-494) potentially target the BCoV spike protein at multiple sites. These miRNAs also regulate the host immune suppressor pathways, which negatively impacts BCoV replication. Furthermore, we found that bta-(miR-2338, miR-6535, miR-2392, and miR-12054) also target the BCoV genome at certain regions but are involved in regulating host immune signal transduction pathways, i.e., type I interferon (IFN) and retinoic acid-inducible gene I (RIG-I) pathways. Moreover, both miR-2338 and miR-2392 also target host transcriptional factors RORA, YY1, and HLF, which are potential diagnostic markers for BCoV infection. Therefore, miR-2338, miR-6535, miR-2392, and miR-12054 have the potential to fine-tune BCoV tropism and immune evasion and enhance viral pathogenesis. Our results indicate that host miRNAs play essential roles in the BCoV tissue tropism, pathogenesis, and immune regulation. Four bovine miRNAs (miR-2375, bta-miR-193a-3p, bta-miR-12059, and bta-miR-494) target BCoV-S glycoprotein and are potentially involved in several immune suppression pathways during the viral infection. These miRNA candidates could serve as good genetic markers for BCoV infection. However, further studies are urgently needed to validate these identified miRNAs and their target genes in the context of BCoV infection and dual tropism and as genetic markers.

9.
Front Vet Sci ; 11: 1352636, 2024.
Article in English | MEDLINE | ID: mdl-38500603

ABSTRACT

Introduction: Avian orthoavulavirus-1 (AOAV1) has a wide host range, including domestic and wild birds. The present study aimed to identify the currently circulating AOAV1 strains from some outbreaks in some backyard pigeons in the eastern region of Saudi Arabia (ERSA). Methods: Tracheal/cloacal swabs and tissue specimens were collected from eight backyards in Al-Ahsa, ERSA, between January 2021 and March 2023. Samples were tested for the presence of AOAV1 using commercial real-time RT-PCR. Part of the fusion gene was also amplified by gel-based RT-PCR, and the obtained amplicons were sequenced. Results and discussion: AOAV1 was detected in samples from the eight flocks. The retrieved sequences from samples of 6/8 pigeon backyards are reported. Phylogenetic analysis based on the obtained sequences from these backyard pigeons showed the segregation of the obtained sequences in AOAV1 genotypes VI.2.1 and VII.1.1. Clinically, nervous manifestations were dominant in pigeons infected with both genotypes. Respiratory manifestations and significantly higher overall mortality rate were induced by genotype VI.2.1. The deduced amino acid sequences of the fusion protein cleavage site (FPCS) showed that all the detected isolates belong to velogenic strains. Differences in clinical profiles induced by the natural infection of pigeons with AOAV1 genotypes VI.2.1 and VII.1.1 were reported. The present findings highlight the potential roles of some backyard pigeons in the long-distance spread and cross-species transmission of the reported AOAVI genotypes. Further research is required to perform biotyping and pathotyping of the reported strains.

10.
Front Vet Sci ; 10: 1130147, 2023.
Article in English | MEDLINE | ID: mdl-37483297

ABSTRACT

Introduction: Bovine viral diarrhea virus (BVDV) significantly impacts the bovine industries, both dairy and beef sectors. BVDV can infect various domestic and wild animals, most notably cattle. The dynamic variations among BVDV serotypes due to the continuous genetic diversity, especially in BVDV1 (BVDV1), reduce the effectiveness of the currently available vaccines and reduce the specificity/sensitivity of the diagnostic assays. The development of novel, safe, and effective vaccines against BVDV requires deep knowledge of the antigenicity and virulence of the virus. Previous studies on the antigenicity and the virulence of BVDV serotypes have been mainly focused on one or a few BVDV proteins. While however, little is known about the orchestration of all BVDV in the context of viral virulence and immunogenicity. The main aim of the current study was to do a comparative computational evaluation of the immunogenicity, and virulence for all the encoded proteins of both BVDV1 and BVDV2 and their sub-genotypes. Methods: To achieve this goal, 11,737 protein sequences were retrieved from Virus Pathogen Resource. The analysis involved a total of 4,583 sequences after the removal of short sequences and those with unknown collection time. We used the MP3 tool to map the pathogenic proteins across different BVDV strains. The potential protective and the epitope motifs were predicted using the VaxiJen and EMBOSS antigen tools, respectively. Results and discussion: The virulence prediction revealed that the NS4B proteins of both BVDV1 and BVDV2 likely have essential roles in BVDV virulence. Similarly, both the capsid (C) and the NS4-A proteins of BVDV1 and the Npro and P7 proteins of BVDV2 are likely important virulent factors. There was a clear trend of increasing predicted virulence with the progression of time in the case of BVDV1 proteins, but that was not the case for the BVDV2 proteins. Most of the proteins of the two BVDV serotypes possess antigens predicted immunogens except Npro, P7, and NS4B. However, the predicted antigenicity of the BVDV1 was significantly higher than that of BVDV2. Meanwhile, the predicted immunogenicity of the immunodominant-E2 protein has been decreasing over time. Based on our predicted antigenicity and pathogenicity studies of the two BVDV serotypes, the sub-genotypes (1a, 1f, 1k, 2a, and 2b) may represent ideal candidates for the development of future vaccines against BVDV infection in cattle. In summary, we identified some common differences between the two BVDV genotypes (BVDV1 and BVDV2) and their sub-genotypes regarding their protein antigenicity and pathogenicity. The data presented here will increase our understanding of the molecular pathogenesis of BVDV infection in cattle. It will also pave the way for developing some novel diagnostic assays and novel vaccines against BVDV in the near future.

11.
Vet World ; 16(9): 1866-1870, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37859953

ABSTRACT

Background and Aim: Avian viral diseases usually cause high economic losses because of high morbidity and mortality and poor growth. The rearing of chickens in backyards could have an important role in the spread of certain diseases, particularly those of viral origin. Infected birds might be prone to many viral infections for several reasons, including a lack of vaccination programs, the mixing of different bird species in the same location, and the close interactions of these birds with wild and migratory birds carrying various pathogens. This study aimed to conduct serological surveillance of avian encephalomyelitis virus (AEV) in some backyard chickens in the eastern region of Saudi Arabia. Materials and Methods: Serum samples (n = 368) were collected from domestic chickens reared in 10 backyards in the Eastern Province of Saudi Arabia. None of the domestic birds in these 10 backyards were vaccinated against the virus. In addition, 78 serum samples were collected from free-ranging birds belonging to Columbidae, such as pigeons and doves, in common areas near the domestic backyards. We tested these sera for specific antibodies against AEV. Results: Our results revealed seroconversion to AEV among the examined chickens (14.6%). None of the tested pigeons and doves displayed seroconversion to AEV. Conclusion: Seroconversion of these non-vaccinated birds against AEV was suggestive of a recent natural infection by this virus. Further studies with a large number of birds are required to molecularly characterize the circulating strains of this virus in this area.

12.
Front Vet Sci ; 10: 1221883, 2023.
Article in English | MEDLINE | ID: mdl-37781291

ABSTRACT

Introduction: Bovine viral diarrhea virus (BVDV) brings great economic loss to the cattle industry worldwide. Developing a control/prevention strategy requires the prior assessment of certain epidemiological parameters. To determine the BVD incidence rate and associated risk factors, a dairy cattle herd in the eastern region of Saudi Arabia was monitored between 2020 and 2022. Methods: Nasal swabs (n = 190), rectal swabs (n = 190), and sera (n = 190) were collected from 79 cows in this herd. Collected sera and swabs were tested using the commercially available ELISAs for the BVDV antibodies and antigens, respectively. Collected sera were also tested for the presence of BVDV nucleic acids using commercial real-time RT-PCR kits. Results and discussion: Our data show BVDV seroprevalence (18.8%, 15%, and 8.2%) in the tested animals in 2020-2022, respectively. None of the collected nasal swabs, rectal swabs, or sera tested positive for the BVDV antigen, whereas 10.1%, 10%, and 18.1% of the tested sera were positive for BVDV nucleic acid in 2020-2022, respectively. The incidence rate was estimated at 0.02446 new cases/year despite the detection of BVDV in seronegative animals on single or two occasions at ≥6-month intervals. Young calves and bulls remained apparently unexposed to BVDV despite their presence with BVDV-infected females, with no significant physical separation. Both seropositivity and nucleic acid detectability showed significant positive and negative correlations, respectively, with reproductive performance. Collectively, the present study provides useful clues about the transmissibility of BVDV in the presence of possibly persistently infected animals. To the best of our knowledge, this is the first longitudinal study of BVDV in the Eastern Region of Saudi Arabia. Further detailed characterization of the circulating BVDVs is encouraged.

13.
Vet World ; 16(6): 1246-1251, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37577191

ABSTRACT

Background and Aim: Avian metapneumovirus (aMPV) is a recently discovered respiratory virus in chickens. Avian metapneumovirus has been linked to respiratory syndromes, reproductive failure in affected chickens and turkeys, swollen head syndrome in chickens, and rhinotracheitis in turkeys. Wild birds are considered potential reservoirs of aMPV, particularly aMPV-C. However, little is known about the prevalence of aMPV in Saudi Arabia. Considering the relevance of backyard chickens in the transmission and sustainability of certain avian viral diseases, this study aimed to assess aMPV exposure in backyard chickens and wild birds circulating near selected locations. Materials and Methods: We collected 368 serum samples from unvaccinated backyard chickens in ten locations in Eastern Saudi Arabia. Furthermore, we collected 78 serum samples from species of free-ranging birds belonging to the Columbidae family, such as pigeons and doves, captured from the same areas. Using commercial enzyme-linked immunosorbent assay kits, we tested the sera of domestic backyard chickens and wild birds for antibodies against aMPV. Results: Our results showed that 74/368 birds were positive for aMPV-related antibodies. Conversely, none of the tested wild birds seroconverted to aMPV. Conclusion: The antibody titers detected in the backyard chickens suggested recent exposure to aMPV. Considering these results, further large-scale serological and molecular studies are needed to evaluate the prevalence of aMPV in these birds and characterize the circulating strains of aMPV in this region.

14.
Vet Med Sci ; 8(3): 1330-1336, 2022 05.
Article in English | MEDLINE | ID: mdl-35114072

ABSTRACT

BACKGROUND: Retroviral infections have been reported in many species of animals, especially cattle, sheep and goats. However, there are no available reports about retrovirus infection in dromedary camels. Several dromedary camels showed visible tumor-like lesions on and around the nostrils as well as around the eyes. OBJECTIVES: Following are the objectives: to identify the causative agents of these identified tumours in dromedary camels and to perform molecular characterization of the detected strains of the causative agent. METHODS: We extracted the nucleic acids from some fresh lesions out of these animals, and then amplified some key retrovirus genes. We amplified several regions of the rotavirus genome using the PCR technique. The obtained sequences were assembled and the phylogenetic trees were conducted per each target retrovirus gene. RESULTS: Our results revealed a high degree of identity to some retroviruses of sheep. Phylogenetic analysis based on some retrovirus genes revealed that the causative agents of these lesions are closely related to sheep retroviruses, particularly the Jaagsiekte sheep Retrovirus (JSRV) and the ENTV. CONCLUSIONS: To the best of our knowledge, this is the first report of retrovirus infections in dromedary camels in the Arabian Peninsula. This highlights the possible species jump for the retrovirus from sheep and goats to the dromedary camels, which live in close proximity with these animals in many parts of the world, especially the Arabian Peninsula.


Subject(s)
Betaretrovirus , Cattle Diseases , Goat Diseases , Retroviridae Infections , Sheep Diseases , Animals , Betaretrovirus/genetics , Camelus , Cattle , Goats , Phylogeny , Retroviridae Infections/veterinary , Saudi Arabia/epidemiology , Sheep
15.
Vet Med Sci ; 8(3): 1305-1310, 2022 05.
Article in English | MEDLINE | ID: mdl-35104060

ABSTRACT

BACKGROUND: The Middle East Respiratory Syndrome coronavirus (MERS-CoV) is still listed on the WHO Research and Development Blueprint of emerging pathogens. Dromedary camels remain the only known animal reservoir of the virus. The animal-to-animal as well as the animal-to-human transmission in the MERS-CoV cycles were reported. However, many aspects of these transmission chains are not well studied. One of these directions is the potential roles of various species of arthropods in the transmission of the virus. OBJECTIVES: The main goal of the current work was to study the roles of several species of arthropods in the transmission of MERS-CoV. METHODOLOGY: To achieve this goal, we identified some MERS-CoV naturally infected dromedary camel populations. We conducted a longitudinal study among these animals for more than 2 months. This was done by repeated testing of nasal swabs biweekly from some selected animals in this population for the presence of MERS-CoV-RNAs by real-time PCR. During the duration of this study, we collected several species of arthropods (Culicoides, Stomoxys, Musca domestica and some Culex species) that shared the habitat and were circulating in this farm during this longitudinal study. RESULTS: Our results showing, despite the detection of the viral RNAs in some animals throughout this study, none of the examined species of arthropods tested positive for the viral RNA. CONCLUSIONS: These results are suggesting that at least the tested species of arthropods may not play roles in the transmission of MERS-CoV. However, more large-scale studies are required to explore any potential roles of arthropods in the transmission cycle of MERS-CoV.


Subject(s)
Arthropods , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Arthropods/genetics , Camelus , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Longitudinal Studies , Middle East Respiratory Syndrome Coronavirus/genetics , RNA, Viral/analysis , RNA, Viral/genetics
16.
Virusdisease ; 33(3): 291-302, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36059721

ABSTRACT

Infectious bronchitis virus (IBV) has been frequently reported in chickens worldwide, including in the Eastern Region of Saudi Arabia (ERS). Several IBV outbreaks were recently reported in chickens despite the massive use of various vaccines. Based on partial sequencing of the S1 gene, at least three genotypes were reported (CK/CH/LDL/97I, IS/720/99, and IS/Variant2/98) in the ERS with no available homologous vaccines. Herein, we tried to evaluate the protection provided by some selected commercial-available vaccines against these three genotypes. We divided the experimental chickens into eight groups. Representative isolates from these genotypes were inoculated into three groups of broiler chickens vaccinated with the H-120 vaccine at the age of 1 day and boosted with the 4/91 vaccine at the age of 14 days (challenged groups). One group of chickens had received the same protocol of IBV vaccines but was kept without infection to serve as a vaccine control group. The three isolates were inoculated into three other similar but unvaccinated groups of broiler chickens (infected groups). Group eight chickens were neither vaccinated nor infected and used as a negative control group. Evaluation of the protection induced by the tested vaccination schedule was assessed by several criteria, including the ability to reduce the severe clinical signs caused by IBV infection, changes in the body temperature of various groups of chickens, the reduction in the magnitude of IBV-induced lesions, and the reduction in the viral loads in tracheas of a different group of chicken. Monitoring the immune status of chickens was also recorded based on the hemagglutination inhibition antibodies in sera of various groups of chickens. Our results show clinical and tracheal protection against IBV/IS/Variant2/98-like and IBV/IS/720/99-like strains. Moderate protection was observed in the IBV/CK/CH/LDL/97I-like pressure. The kidneys of the challenged groups of chickens showed minimal or no gross lesions compared with the infected groups, even in those chickens challenged with the IBV/CK/CH/LDL/97I-like strain. In conclusion, this is the first study to perform the protectotyping of some IBV strains from Saudi Arabia. It demonstrated the proficiency of the investigated vaccination schedule in control of infection of broiler chickens with IBV/IS/Variant2/98 and IBV/IS/720/99 strains. It is highly recommended to introduce the homologous IBV/CK/CH/LDL/97I-based vaccine to the vaccination protocols of chickens in the ERS to match the circulating strains and ensure better protection.

17.
Vet World ; 15(8): 1924-1931, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36313839

ABSTRACT

Background and Aim: Bovine viral diarrhea virus (BVDV) is one of the most important viral pathogens causing high economic losses in cattle of all ages. Despite the active vaccination campaigns against BVDV, many outbreaks are still detected in various populations of cattle worldwide. Other species of animals such as dromedary camels, sheep, and goats may harbor BVDV infection and cause variable clinical syndromes. Thus, they may act as a source of infection to the cattle population around them. However, little is still known about the roles of these animals in the viral transmission and sustainability of BVDV in the environment. This study aimed to explore if the dromedary camels, sheep, and goats may seroconvert against BVDV and to study some associated risk factors for BVDV in these species of animals. Materials and Methods: We tested 1012 serum samples from dromedary camels, 84 from goats, and 21 from sheep for BVDV antibodies using commercial enzyme-linked immunosorbent assay (ELISA) kits. Meanwhile, we selected 211 serum samples from dromedary camels to be tested for the BVDV antigen using the commercial ELISA kits. Results: Our results show that 49/1117 serum samples were positive for the BVDV antibodies in dromedary camels (46/1012), goats (3/84), and none of the tested sheep samples were positive. However, none of the collected serum samples tested positive for the BVDV antigen. Conclusion: Seroconversion of some dromedary camels, sheep, and goats to the BVDV with no history of vaccination against BVDV strongly suggests the potential roles of these species of animals in the virus transmission cycle. The main limitations of the current study are (1) the lack of samples from other species of animals that lived close by these animals, particularly cattle. (2) lack of follow-up samples from the same animal over a long period. We believe the long-term longitudinal study of BVDV in various species of animals, particularly dromedary camels, goats, and sheep, is one of our future research directions. This will provide more information about the dynamics of BVDV antibodies in these species of animals.

18.
Zoonoses Public Health ; 68(4): 353-357, 2021 06.
Article in English | MEDLINE | ID: mdl-33565270

ABSTRACT

Dromedary camels are playing essential roles in the evolution and transmission of MERS-CoV. MERS-CoV shedding in some dromedary camel secretions, particularly nasal swabs, were studied in more detail. However, the roles of viral shedding in saliva and ocular secretions are still required further detailed studies. We performed a longitudinal study on a farm of dromedary camel herd from 10th March until 7th April, 2019, in eastern Saudi Arabia. This is a closed management herd including a large number of colour-based breed animals and include animals of both sexes. We collected saliva and ocular swabs from 18% of the target animal population. Detection of the MERS-CoV-RNAs in these samples was conducted by the real-time PCR technique. We detected the viral RNAs in the saliva of and conjunctival swabs of some of the tested animals at 33%, 77% and 88% during the three-time points, respectively. Moreover, we also detected the viral RNAs in the conjunctival swabs at 11%, 22% and 33% at similar time intervals. Our results are suggesting the possibility of MERS-CoV shedding in the saliva and the ocular discharges of the infected dromedary camels. This explains, at least in part, the mechanism of transmission of MERS-CoV from animals to humans. More studies are needed for a better understanding of the transmission of MERS-CoV from animals to humans; thus, the risk of virus spread can be mitigated.


Subject(s)
Camelus/virology , Conjunctiva/chemistry , Coronavirus Infections/veterinary , Middle East Respiratory Syndrome Coronavirus/genetics , RNA, Viral/analysis , Saliva/chemistry , Animals , Phylogeny , Saudi Arabia/epidemiology , Virus Shedding
19.
Virusdisease ; 32(2): 354-360, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33846693

ABSTRACT

The infectious bronchitis virus (IBV) is still one of the major respiratory viral pathogens of chickens. The IBV infection resulted in a wide range of clinical syndromes in the affected chickens, including respiratory, renal, gonads affections as well as generalized infections. Despite the intensive application of various commercial vaccines against the virus, many outbreaks are still reported in chickens worldwide. Several studies reported the circulation of several strains and genotypes of the IBV in eastern Saudi Arabia. The main goal of the current study was to isolate some of the circulating strains of IBV and assess its ability to reproduce the IBV infections in the challenge birds. Another objective was to monitor the immune status of the infected chickens during the course of this study. To achieve these goals, we used some filed IBV isolates retrieved from an outbreak in a broiler chicken farm in eastern Saudi Arabia in 2014. A total of 220-day-old chickens (110 Ross and 110 native Saudi breed chickens), twenty birds per each group, were used in this study. The chickens in some groups received some IBV vaccines on day one of the experiment, and some are boosted on day 19. All birds were challenged on day 28 of the experiment. Our results showed mild IBV signs in the non-vaccinated control group of chickens; however, the vaccinated chickens did not show any signs of IBV infections. Meanwhile, both the vaccinated and the none- vaccinated birds seroconverted to the IBV as shown by the ELISA results. In conclusion, the response of the IBV infected birds is mainly driven by the vaccination plans they received as a prime-boost regime. Further studies are required for a better understanding of the dynamics of IBV infection in native Saudi chickens.

20.
Hum Vaccin Immunother ; 17(10): 3297-3309, 2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34114940

ABSTRACT

SARS-CoV2 infection induces various degrees of infections ranging from asymptomatic to severe cases and death. Virus/host interplay contributes substantially to these outcomes. This highlights the potential roles of the host immune system in fighting virus infections. SARS-CoV-2. We highlighted the potential roles of host immune response in the modulation of the outcomes of SARS-CoV infections. The newly emerged SARS-CoV-2 mutants complicated the control and mitigation strategies measures. We are highlighting the current progress of some already deployed vaccines worldwide as well as those still in the pipelines. Recent studies from the large ongoing global vaccination campaign are showing promising results in reducing the hospitality rates as well as the number of severe SARS-CoV-2 infected patients. Careful monitoring of the genetic changes of the virus should be practiced. This is to prepare some highly sensitive diagnostic assays as well as to prepare some homologous vaccines matching the circulating strains in the future.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Humans , Immunity , Immunity, Innate , RNA, Viral
SELECTION OF CITATIONS
SEARCH DETAIL