ABSTRACT
Antibiotic resistance can rapidly spread through bacterial populations via bacterial conjugation. The bacterial membrane has an important role in facilitating conjugation, thus investigating the effects on the bacterial membrane caused by conjugative plasmids, antibiotic resistance, and genes involved in conjugation is of interest. Analysis of bacterial membranes was conducted using gas cluster ion beam-secondary ion mass spectrometry (GCIB-SIMS). The complexity of the data means that data analysis is important for the identification of changes in the membrane composition. Preprocessing of data and several analytical methods for identification of changes in bacterial membranes have been investigated. GCIB-SIMS data from Escherichia coli samples were subjected to principal components analysis (PCA), principal components-canonical variate analysis (PC-CVA), and Random Forests (RF) data analysis with the aim of extracting the maximum biological information. The influence of increasing replicate data was assessed, and the effect of diminishing biological variation was studied. Optimized m/z region-specific scaling provided improved clustering, with an increase in biologically significant peaks contributing to the loadings. PC-CVA improved clustering, provided clearer loadings, and benefited from larger data sets collected over several months. RF required larger sample numbers and while showing overlap with the PC-CVA, produced additional peaks of interest. The combination of PC-CVA and RF allowed very subtle differences between bacterial strains and growth conditions to be elucidated for the first time. Specifically, comparative analysis of an E. coli strain with and without the F-plasmid revealed changes in cyclopropanation of fatty acids, where the addition of the F-plasmid led to a reduction in cyclopropanation.
Subject(s)
Escherichia coli , Principal Component Analysis , Spectrometry, Mass, Secondary Ion , Escherichia coli/drug effects , Spectrometry, Mass, Secondary Ion/methods , Anti-Bacterial Agents/pharmacology , Cell Membrane/metabolism , Cell Membrane/chemistry , Drug Resistance, Bacterial , Drug Resistance, Microbial , Random ForestABSTRACT
OBJECTIVES: Visceral adipose tissue (VAT) is highly associated with metabolic syndrome (MetS), which is rapidly increasing in young adults. However, accessible VAT measurement methods are limited, restricting the use of VAT in early detection. This cross-sectional study sought to determine if near-infrared reactance spectroscopy (NIRS)-derived VAT (VATNIRS) was associated with MetS in a multi-ethnic sample of young adults. METHODS: A total of 107 male and female (F:62, M:45) participants (age: 23.0 ± 4.3y; BMI: 27.1 ± 6.6 kg/m2) completed measurements of fasting blood pressure, blood glucose (FBG), blood lipids, and anthropometric assessments including waist circumference and VATNIRS. MetS severity (MetSindex) was calculated from the aforementioned risk factors using sex and race-specific equations. RESULTS: VATNIRS was higher in participants with, and at risk for, MetS compared to those with lower risks (all p < .001). VATNIRS was positively associated with MetSindex for all groups (all p < .001). VATNIRS showed positive associations with systolic (SBP), diastolic (DBP), and mean arterial pressure (MAP), LDL-C and LDL-C-related biomarkers, and FBG; and negative associations with HDL-C and HDL-C-to-total cholesterol ratio (all p < .050). Associations between VATNIRS and blood pressure for females, and LDL-C and LDL-C-related biomarkers for males, were nonsignificant (all p > .050). VATNIRS was positively associated with DBP in African-American participants, and SBP in White participants, resulting in positive associations with MAP for both groups (all p < .050). CONCLUSIONS: VATNIRS is associated with MetS and individual MetS risks factors in a multi-ethnic sample of young adults; providing a noninvasive, cost-effective, portable, and accessible method that may assist in the early detection of MetS and other cardiometabolic abnormalities.
Subject(s)
Intra-Abdominal Fat , Metabolic Syndrome , Spectroscopy, Near-Infrared , Humans , Male , Female , Young Adult , Cross-Sectional Studies , Adult , Spectroscopy, Near-Infrared/methods , AdolescentABSTRACT
BACKGROUND: The efficacy and safety of combination therapy with eflornithine and sulindac, as compared with either drug alone, in delaying disease progression in patients with familial adenomatous polyposis are unknown. METHODS: We evaluated the efficacy and safety of the combination of eflornithine and sulindac, as compared with either drug alone, in adults with familial adenomatous polyposis. The patients were stratified on the basis of anatomical site with the highest polyp burden and surgical status; the strata were precolectomy (shortest projected time to disease progression), rectal or ileal pouch polyposis after colectomy (longest projected time), and duodenal polyposis (intermediate projected time). The patients were then randomly assigned in a 1:1:1 ratio to receive 750 mg of eflornithine, 150 mg of sulindac, or both once daily for up to 48 months. The primary end point, assessed in a time-to-event analysis, was disease progression, defined as a composite of major surgery, endoscopic excision of advanced adenomas, diagnosis of high-grade dysplasia in the rectum or pouch, or progression of duodenal disease. RESULTS: A total of 171 patients underwent randomization. Disease progression occurred in 18 of 56 patients (32%) in the eflornithine-sulindac group, 22 of 58 (38%) in the sulindac group, and 23 of 57 (40%) in the eflornithine group, with a hazard ratio of 0.71 (95% confidence interval [CI], 0.39 to 1.32) for eflornithine-sulindac as compared with sulindac (P = 0.29) and 0.66 (95% CI, 0.36 to 1.24) for eflornithine-sulindac as compared with eflornithine. Among 37 precolectomy patients, the corresponding values in the treatment groups were 2 of 12 patients (17%), 6 of 13 (46%), and 5 of 12 (42%) (hazard ratios, 0.30 [95% CI, 0.07 to 1.32] and 0.20 [95% CI, 0.03 to 1.32]); among 34 patients with rectal or ileal pouch polyposis, the values were 4 of 11 patients (36%), 2 of 11 (18%), and 5 of 12 (42%) (hazard ratios, 2.03 [95% CI, 0.43 to 9.62] and 0.84 [95% CI, 0.24 to 2.90]); and among 100 patients with duodenal polyposis, the values were 12 of 33 patients (36%), 14 of 34 (41%), and 13 of 33 (39%) (hazard ratios, 0.73 [95% CI, 0.34 to 1.52] and 0.76 [95% CI, 0.35 to 1.64]). Adverse and serious adverse events were similar across the treatment groups. CONCLUSIONS: In this trial involving patients with familial adenomatous polyposis, the incidence of disease progression was not significantly lower with the combination of eflornithine and sulindac than with either drug alone. (Funded by Cancer Prevention Pharmaceuticals; ClinicalTrials.gov number, NCT01483144; EudraCT number, 2012-000427-41.).
Subject(s)
Adenomatous Polyposis Coli/drug therapy , Disease Progression , Eflornithine/therapeutic use , Sulindac/therapeutic use , Adult , Drug Therapy, Combination , Eflornithine/adverse effects , Female , Humans , Intention to Treat Analysis , Kaplan-Meier Estimate , Male , Sulindac/adverse effects , Treatment OutcomeABSTRACT
Routine screening of tumors for DNA mismatch repair (MMR) deficiency (dMMR) in colorectal (CRC), endometrial (EC) and sebaceous skin (SST) tumors leads to a significant proportion of unresolved cases classified as suspected Lynch syndrome (SLS). SLS cases (n = 135) were recruited from Family Cancer Clinics across Australia and New Zealand. Targeted panel sequencing was performed on tumor (n = 137; 80×CRCs, 33×ECs and 24xSSTs) and matched blood-derived DNA to assess for microsatellite instability status, tumor mutation burden, COSMIC tumor mutational signatures and to identify germline and somatic MMR gene variants. MMR immunohistochemistry (IHC) and MLH1 promoter methylation were repeated. In total, 86.9% of the 137 SLS tumors could be resolved into established subtypes. For 22.6% of these resolved SLS cases, primary MLH1 epimutations (2.2%) as well as previously undetected germline MMR pathogenic variants (1.5%), tumor MLH1 methylation (13.1%) or false positive dMMR IHC (5.8%) results were identified. Double somatic MMR gene mutations were the major cause of dMMR identified across each tumor type (73.9% of resolved cases, 64.2% overall, 70% of CRC, 45.5% of ECs and 70.8% of SSTs). The unresolved SLS tumors (13.1%) comprised tumors with only a single somatic (7.3%) or no somatic (5.8%) MMR gene mutations. A tumor-focused testing approach reclassified 86.9% of SLS into Lynch syndrome, sporadic dMMR or MMR-proficient cases. These findings support the incorporation of tumor sequencing and alternate MLH1 methylation assays into clinical diagnostics to reduce the number of SLS patients and provide more appropriate surveillance and screening recommendations.
Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair/genetics , Colorectal Neoplasms/genetics , Neoplastic Syndromes, Hereditary/genetics , MutL Protein Homolog 1/genetics , DNA Methylation/genetics , Microsatellite InstabilityABSTRACT
The detection and classification of histopathological abnormal tissue constituents using machine learning (ML) techniques generally requires example data for each tissue or cell type of interest. This creates problems for studies on tissue that will have few regions of interest, or for those looking to identify and classify diseases of rarity, resulting in inadequate sample sizes from which to build multivariate and ML models. Regarding the impact on vibrational spectroscopy, specifically infrared (IR) spectroscopy, low numbers of samples may result in ineffective modelling of the chemical composition of sample groups, resulting in detection and classification errors. Anomaly detection may be a solution to this problem, enabling users to effectively model tissue constituents considered to represent normal tissue to capture any abnormal tissue and identify instances of non-normal tissue, be it disease or spectral artefacts. This work illustrates how a novel approach using a weakly supervised anomaly detection algorithm paired with IR microscopy can detect non-normal tissue spectra. In addition to incidental interferents such as hair, dust, and tissue scratches, the algorithm can also detect regions of diseased tissue. The model is never introduced to instances of these groups, training solely on healthy control data using only the IR spectral fingerprint region. This approach is demonstrated using liver tissue data from an agrochemical exposure mouse study.
Subject(s)
Algorithms , Hair , Mice , Animals , Spectroscopy, Fourier Transform Infrared/methods , Fourier AnalysisABSTRACT
Auriculocondylar syndrome (ACS) is a rare craniofacial disorder characterized by mandibular hypoplasia and an auricular defect at the junction between the lobe and helix, known as a "Question Mark Ear" (QME). Several additional features, originating from the first and second branchial arches and other tissues, have also been reported. ACS is genetically heterogeneous with autosomal dominant and recessive modes of inheritance. The mutations identified to date are presumed to dysregulate the endothelin 1 signaling pathway. Here we describe 14 novel cases and reassess 25 published cases of ACS through a questionnaire for systematic data collection. All patients harbor mutation(s) in PLCB4, GNAI3, or EDN1. This series of patients contributes to the characterization of additional features occasionally associated with ACS such as respiratory, costal, neurodevelopmental, and genital anomalies, and provides management and monitoring recommendations.
Subject(s)
Ear Diseases , Ear/abnormalities , Ear Diseases/genetics , Humans , Pedigree , PhenotypeABSTRACT
The visual detection, classification, and differentiation of cancers within tissues of clinical patients is an extremely difficult and time-consuming process with severe diagnosis implications. To this end, many computational approaches have been developed to analyse tissue samples to supplement histological cancer diagnoses. One approach is the interrogation of the chemical composition of the actual tissue samples through the utilisation of vibrational spectroscopy, specifically Infrared (IR) spectroscopy. Cancerous tissue can be detected by analysing the molecular vibration patterns of tissues undergoing IR irradiation, and even graded, with multivariate and Machine Learning (ML) techniques. This publication serves to review and highlight the potential for the application of infrared microscopy techniques such as Fourier Transform Infrared Spectroscopy (FTIR) and Quantum Cascade Laser Infrared Spectroscopy (QCL), as a means to improve diagnostic accuracy and allow earlier detection of human neoplastic disease. This review provides an overview of the detection and classification of different cancerous tissues using FTIR spectroscopy paired with multivariate and ML techniques, using the F1-Score as a quantitative metric for direct comparison of model performances. Comparisons also extend to data handling techniques, with a provision of a suggested pre-processing protocol for future studies alongside suggestions as to reporting standards for future publication.
Subject(s)
Lasers, Semiconductor , Neoplasms , Humans , Machine Learning , Microscopy/methods , Neoplasms/diagnosis , Spectroscopy, Fourier Transform Infrared/methods , VibrationABSTRACT
Next-generation sequencing combined with international data sharing has enormously facilitated identification of new disease-associated genes and mutations. This is particularly true for genetically extremely heterogeneous entities such as neurodevelopmental disorders (NDDs). Through exome sequencing and world-wide collaborations, we identified and assembled 20 individuals with de novo variants in FBXO11. They present with mild to severe developmental delay associated with a range of features including short (4/20) or tall (2/20) stature, obesity (5/20), microcephaly (4/19) or macrocephaly (2/19), behavioral problems (17/20), seizures (5/20), cleft lip or palate or bifid uvula (3/20), and minor skeletal anomalies. FBXO11 encodes a member of the F-Box protein family, constituting a subunit of an E3-ubiquitin ligase complex. This complex is involved in ubiquitination and proteasomal degradation and thus in controlling critical biological processes by regulating protein turnover. The identified de novo aberrations comprise two large deletions, ten likely gene disrupting variants, and eight missense variants distributed throughout FBXO11. Structural modeling for missense variants located in the CASH or the Zinc-finger UBR domains suggests destabilization of the protein. This, in combination with the observed spectrum and localization of identified variants and the lack of apparent genotype-phenotype correlations, is compatible with loss of function or haploinsufficiency as an underlying mechanism. We implicate de novo missense and likely gene disrupting variants in FBXO11 in a neurodevelopmental disorder with variable intellectual disability and various other features.
Subject(s)
F-Box Proteins/genetics , Genetic Variation/genetics , Neurodevelopmental Disorders/genetics , Protein-Arginine N-Methyltransferases/genetics , Child , Exome/genetics , Female , Genetic Association Studies/methods , Humans , Intellectual Disability/genetics , Male , Microcephaly/genetics , Proteasome Endopeptidase Complex/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Exome Sequencing/methodsABSTRACT
Next-generation sequencing is a powerful tool for the discovery of genes related to neurodevelopmental disorders (NDDs). Here, we report the identification of a distinct syndrome due to de novo or inherited heterozygous mutations in Tousled-like kinase 2 (TLK2) in 38 unrelated individuals and two affected mothers, using whole-exome and whole-genome sequencing technologies, matchmaker databases, and international collaborations. Affected individuals had a consistent phenotype, characterized by mild-borderline neurodevelopmental delay (86%), behavioral disorders (68%), severe gastro-intestinal problems (63%), and facial dysmorphism including blepharophimosis (82%), telecanthus (74%), prominent nasal bridge (68%), broad nasal tip (66%), thin vermilion of the upper lip (62%), and upslanting palpebral fissures (55%). Analysis of cell lines from three affected individuals showed that mutations act through a loss-of-function mechanism in at least two case subjects. Genotype-phenotype analysis and comparison of computationally modeled faces showed that phenotypes of these and other individuals with loss-of-function variants significantly overlapped with phenotypes of individuals with other variant types (missense and C-terminal truncating). This suggests that haploinsufficiency of TLK2 is the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. This work illustrates the power of international data sharing, by the identification of 40 individuals from 26 different centers in 7 different countries, allowing the identification, clinical delineation, and genotype-phenotype evaluation of a distinct NDD caused by mutations in TLK2.
Subject(s)
Genetic Association Studies , Inheritance Patterns/genetics , Loss of Function Mutation/genetics , Neurodevelopmental Disorders/genetics , Protein Kinases/genetics , Adolescent , Adult , Base Sequence , Cell Line , Child , Child, Preschool , Facies , Female , Humans , Infant , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Translocation, Genetic , Young AdultABSTRACT
Multiple primary tumors (MPTs) affect a substantial proportion of cancer survivors and can result from various causes, including inherited predisposition. Currently, germline genetic testing of MPT-affected individuals for variants in cancer-predisposition genes (CPGs) is mostly targeted by tumor type. We ascertained pre-assessed MPT individuals (with at least two primary tumors by age 60 years or at least three by 70 years) from genetics centers and performed whole-genome sequencing (WGS) on 460 individuals from 440 families. Despite previous negative genetic assessment and molecular investigations, pathogenic variants in moderate- and high-risk CPGs were detected in 67/440 (15.2%) probands. WGS detected variants that would not be (or were not) detected by targeted resequencing strategies, including low-frequency structural variants (6/440 [1.4%] probands). In most individuals with a germline variant assessed as pathogenic or likely pathogenic (P/LP), at least one of their tumor types was characteristic of variants in the relevant CPG. However, in 29 probands (42.2% of those with a P/LP variant), the tumor phenotype appeared discordant. The frequency of individuals with truncating or splice-site CPG variants and at least one discordant tumor type was significantly higher than in a control population (χ2 = 43.642; p ≤ 0.0001). 2/67 (3%) probands with P/LP variants had evidence of multiple inherited neoplasia allele syndrome (MINAS) with deleterious variants in two CPGs. Together with variant detection rates from a previous series of similarly ascertained MPT-affected individuals, the present results suggest that first-line comprehensive CPG analysis in an MPT cohort referred to clinical genetics services would detect a deleterious variant in about a third of individuals.
Subject(s)
Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Neoplasms, Multiple Primary/genetics , Adult , Aged , Biomarkers, Tumor/genetics , Female , Genetic Testing/methods , Germ-Line Mutation/genetics , Humans , Male , Middle Aged , PhenotypeABSTRACT
BACKGROUND: Ovarian cancer risk in BRCA1 and BRCA2 mutation carriers has been shown to decrease with longer duration of oral contraceptive use. Although the effects of using oral contraceptives in the general population are well established (approximately 50% risk reduction in ovarian cancer), the estimated risk reduction in mutation carriers is much less precise because of potential bias and small sample sizes. In addition, only a few studies on oral contraceptive use have examined the associations of duration of use, time since last use, starting age, and calendar year of start with risk of ovarian cancer. OBJECTIVE: This study aimed to investigate in more detail the associations of various characteristics of oral contraceptive use and risk of ovarian cancer, to provide healthcare providers and carriers with better risk estimates. STUDY DESIGN: In this international retrospective study, ovarian cancer risk associations were assessed using oral contraceptives data on 3989 BRCA1 and 2445 BRCA2 mutation carriers. Age-dependent-weighted Cox regression analyses were stratified by study and birth cohort and included breast cancer diagnosis as a covariate. To minimize survival bias, analyses were left truncated at 5 years before baseline questionnaire. Separate analyses were conducted for each aspect of oral contraceptive use and in a multivariate analysis, including all these aspects. In addition, the analysis of duration of oral contraceptive use was stratified by recency of use. RESULTS: Oral contraceptives were less often used by mutation carriers who were diagnosed with ovarian cancer (ever use: 58.6% for BRCA1 and 53.5% BRCA2) than by unaffected carriers (ever use: 88.9% for BRCA1 and 80.7% for BRCA2). The median duration of use was 7 years for both BRCA1 and BRCA2 carriers who developed ovarian cancer and 9 and 8 years for unaffected BRCA1 and BRCA2 carriers with ovarian cancer, respectively. For BRCA1 mutation carriers, univariate analyses have shown that both a longer duration of oral contraceptive use and more recent oral contraceptive use were associated with a reduction in the risk of ovarian cancer. However, in multivariate analyses, including duration of use, age at first use, and time since last use, duration of oral contraceptive use proved to be the prominent protective factor (compared with <5 years: 5-9 years [hazard ratio, 0.67; 95% confidence interval, 0.40-1.12]; >10 years [hazard ratio, 0.37; 95% confidence interval, 0.19-0.73]; Ptrend=.008). The inverse association between duration of use and ovarian cancer risk persisted for more than 15 years (duration of ≥10 years; BRCA1 <15 years since last use [hazard ratio, 0.24; 95% confidence interval, 0.14-0.43]; BRCA1 >15 years since last use [hazard ratio, 0.56; 95% confidence interval, 0.18-0.59]). Univariate results for BRCA2 mutation carriers were similar but were inconclusive because of limited sample size. CONCLUSION: For BRCA1 mutation carriers, longer duration of oral contraceptive use is associated with a greater reduction in ovarian cancer risk, and the protection is long term.
Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Contraceptives, Oral/administration & dosage , Mutation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/prevention & control , Adult , Cohort Studies , Europe/epidemiology , Female , Follow-Up Studies , Genetic Predisposition to Disease , Humans , Middle Aged , Ovarian Neoplasms/epidemiology , Proportional Hazards Models , Retrospective StudiesABSTRACT
The use of infrared spectroscopy to augment decision-making in histopathology is a promising direction for the diagnosis of many disease types. Hyperspectral images of healthy and diseased tissue, generated by infrared spectroscopy, are used to build chemometric models that can provide objective metrics of disease state. It is important to build robust and stable models to provide confidence to the end user. The data used to develop such models can have a variety of characteristics which can pose problems to many model-building approaches. Here we have compared the performance of two machine learning algorithms - AdaBoost and Random Forests - on a variety of non-uniform data sets. Using samples of breast cancer tissue, we devised a range of training data capable of describing the problem space. Models were constructed from these training sets and their characteristics compared. In terms of separating infrared spectra of cancerous epithelium tissue from normal-associated tissue on the tissue microarray, both AdaBoost and Random Forests algorithms were shown to give excellent classification performance (over 95% accuracy) in this study. AdaBoost models were more robust when datasets with large imbalance were provided. The outcomes of this work are a measure of classification accuracy as a function of training data available, and a clear recommendation for choice of machine learning approach.
Subject(s)
Algorithms , Machine LearningABSTRACT
BACKGROUND: The effect of risk-reducing salpingo-oophorectomy (RRSO) on breast cancer risk for BRCA1 and BRCA2 mutation carriers is uncertain. Retrospective analyses have suggested a protective effect but may be substantially biased. Prospective studies have had limited power, particularly for BRCA2 mutation carriers. Further, previous studies have not considered the effect of RRSO in the context of natural menopause. METHODS: A multi-centre prospective cohort of 2272 BRCA1 and 1605 BRCA2 mutation carriers was followed for a mean of 5.4 and 4.9 years, respectively; 426 women developed incident breast cancer. RRSO was modelled as a time-dependent covariate in Cox regression, and its effect assessed in premenopausal and postmenopausal women. RESULTS: There was no association between RRSO and breast cancer for BRCA1 (HR = 1.23; 95% CI 0.94-1.61) or BRCA2 (HR = 0.88; 95% CI 0.62-1.24) mutation carriers. For BRCA2 mutation carriers, HRs were 0.68 (95% CI 0.40-1.15) and 1.07 (95% CI 0.69-1.64) for RRSO carried out before or after age 45 years, respectively. The HR for BRCA2 mutation carriers decreased with increasing time since RRSO (HR = 0.51; 95% CI 0.26-0.99 for 5 years or longer after RRSO). Estimates for premenopausal women were similar. CONCLUSION: We found no evidence that RRSO reduces breast cancer risk for BRCA1 mutation carriers. A potentially beneficial effect for BRCA2 mutation carriers was observed, particularly after 5 years following RRSO. These results may inform counselling and management of carriers with respect to RRSO.
Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/epidemiology , Mutation , Salpingo-oophorectomy/methods , Adult , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Cohort Studies , Female , Humans , Incidence , International Agencies , Menopause , Middle Aged , Prospective Studies , Risk Reduction BehaviorABSTRACT
After publication of the original article [1], we were notified that columns in Table 2 were erroneously displayed.
ABSTRACT
Early B cell factor 3 (EBF3) is an atypical transcription factor that is thought to influence the laminar formation of the cerebral cortex. Here, we report that de novo mutations in EBF3 cause a complex neurodevelopmental syndrome. The mutations were identified in two large-scale sequencing projects: the UK Deciphering Developmental Disorders (DDD) study and the Canadian Clinical Assessment of the Utility of Sequencing and Evaluation as a Service (CAUSES) study. The core phenotype includes moderate to severe intellectual disability, and many individuals exhibit cerebellar ataxia, subtle facial dysmorphism, strabismus, and vesicoureteric reflux, suggesting that EBF3 has a widespread developmental role. Pathogenic de novo variants identified in EBF3 include multiple loss-of-function and missense mutations. Structural modeling suggested that the missense mutations affect DNA binding. Functional analysis of mutant proteins with missense substitutions revealed reduced transcriptional activities and abilities to form heterodimers with wild-type EBF3. We conclude that EBF3, a transcription factor previously unknown to be associated with human disease, is important for brain and other organ development and warrants further investigation.
Subject(s)
Mutation , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Adolescent , Age of Onset , Ataxia/genetics , Canada , Child , DNA/metabolism , Developmental Disabilities/genetics , Face/abnormalities , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Male , Mutation, Missense/genetics , Strabismus/genetics , Syndrome , Transcription Factors/metabolism , United KingdomABSTRACT
BACKGROUND: Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES). METHODS: In this prospective cohort study, two groups in Birmingham and London recruited patients from 34 fetal medicine units in England and Scotland. We used whole-exome sequencing (WES) to evaluate the presence of genetic variants in developmental disorder genes (diagnostic genetic variants) in a cohort of fetuses with structural anomalies and samples from their parents, after exclusion of aneuploidy and large CNVs. Women were eligible for inclusion if they were undergoing invasive testing for identified nuchal translucency or structural anomalies in their fetus, as detected by ultrasound after 11 weeks of gestation. The partners of these women also had to consent to participate. Sequencing results were interpreted with a targeted virtual gene panel for developmental disorders that comprised 1628 genes. Genetic results related to fetal structural anomaly phenotypes were then validated and reported postnatally. The primary endpoint, which was assessed in all fetuses, was the detection of diagnostic genetic variants considered to have caused the fetal developmental anomaly. FINDINGS: The cohort was recruited between Oct 22, 2014, and June 29, 2017, and clinical data were collected until March 31, 2018. After exclusion of fetuses with aneuploidy and CNVs, 610 fetuses with structural anomalies and 1202 matched parental samples (analysed as 596 fetus-parental trios, including two sets of twins, and 14 fetus-parent dyads) were analysed by WES. After bioinformatic filtering and prioritisation according to allele frequency and effect on protein and inheritance pattern, 321 genetic variants (representing 255 potential diagnoses) were selected as potentially pathogenic genetic variants (diagnostic genetic variants), and these variants were reviewed by a multidisciplinary clinical review panel. A diagnostic genetic variant was identified in 52 (8·5%; 95% CI 6·4-11·0) of 610 fetuses assessed and an additional 24 (3·9%) fetuses had a variant of uncertain significance that had potential clinical usefulness. Detection of diagnostic genetic variants enabled us to distinguish between syndromic and non-syndromic fetal anomalies (eg, congenital heart disease only vs a syndrome with congenital heart disease and learning disability). Diagnostic genetic variants were present in 22 (15·4%) of 143 fetuses with multisystem anomalies (ie, more than one fetal structural anomaly), nine (11·1%) of 81 fetuses with cardiac anomalies, and ten (15·4%) of 65 fetuses with skeletal anomalies; these phenotypes were most commonly associated with diagnostic variants. However, diagnostic genetic variants were least common in fetuses with isolated increased nuchal translucency (≥4·0 mm) in the first trimester (in three [3·2%] of 93 fetuses). INTERPRETATION: WES facilitates genetic diagnosis of fetal structural anomalies, which enables more accurate predictions of fetal prognosis and risk of recurrence in future pregnancies. However, the overall detection of diagnostic genetic variants in a prospectively ascertained cohort with a broad range of fetal structural anomalies is lower than that suggested by previous smaller-scale studies of fewer phenotypes. WES improved the identification of genetic disorders in fetuses with structural abnormalities; however, before clinical implementation, careful consideration should be given to case selection to maximise clinical usefulness. FUNDING: UK Department of Health and Social Care and The Wellcome Trust.
Subject(s)
Abnormal Karyotype/statistics & numerical data , Congenital Abnormalities/genetics , Exome Sequencing/statistics & numerical data , Fetal Development/genetics , Fetus/abnormalities , Abnormal Karyotype/embryology , Abortion, Eugenic/statistics & numerical data , Abortion, Spontaneous/epidemiology , Congenital Abnormalities/diagnosis , Congenital Abnormalities/epidemiology , DNA Copy Number Variations/genetics , Female , Fetus/diagnostic imaging , Humans , Infant, Newborn , Live Birth/epidemiology , Male , Nuchal Translucency Measurement , Parents , Perinatal Death/etiology , Pregnancy , Prospective Studies , Stillbirth/epidemiology , Exome Sequencing/methodsABSTRACT
Sotos syndrome is an overgrowth-intellectual disability (OGID) syndrome caused by NSD1 pathogenic variants and characterized by a distinctive facial appearance, an intellectual disability, tall stature and/or macrocephaly. Other associated clinical features include scoliosis, seizures, renal anomalies, and cardiac anomalies. However, many of the published Sotos syndrome clinical descriptions are based on studies of children; the phenotype in adults with Sotos syndrome is not yet well described. Given that it is now 17 years since disruption of NSD1 was shown to cause Sotos syndrome, many of the children first reported are now adults. It is therefore timely to investigate the phenotype of 44 adults with Sotos syndrome and NSD1 pathogenic variants. We have shown that adults with Sotos syndrome display a wide spectrum of intellectual ability with functioning ranging from fully independent to fully dependent. Reproductive rates are low. In our cohort, median height in adult women is +1.9 SD and men +0.5 SD. There is a distinctive facial appearance in adults with a tall, square, prominent chin. Reassuringly, adults with Sotos syndrome are generally healthy with few new medical issues; however, lymphedema, poor dentition, hearing loss, contractures and tremor have developed in a small number of individuals.
Subject(s)
Phenotype , Sotos Syndrome/physiopathology , Adult , Child , Facies , Female , Humans , Intellectual Disability/genetics , Male , Sotos Syndrome/genetics , Sotos Syndrome/psychologyABSTRACT
PURPOSE: Increasing numbers of genes are being implicated in Mendelian disorders and incorporated into clinical test panels. However, lack of evidence supporting the gene-disease relationship can hinder interpretation. We explored the utility of testing 51 additional genes for hypertrophic cardiomyopathy (HCM), one of the most commonly tested Mendelian disorders. METHODS: Using genome sequencing data from 240 sarcomere gene negative HCM cases and 6229 controls, we undertook case-control and individual variant analyses to assess 51 genes that have been proposed for HCM testing. RESULTS: We found no evidence to suggest that rare variants in these genes are prevalent causes of HCM. One variant, in a single case, was categorized as likely to be pathogenic. Over 99% of variants were classified as a variant of uncertain significance (VUS) and 54% of cases had one or more VUS. CONCLUSION: For almost all genes, the gene-disease relationship could not be validated and lack of evidence precluded variant interpretation. Thus, the incremental diagnostic yield of extending testing was negligible, and would, we propose, be outweighed by problems that arise with a high rate of uninterpretable findings. These findings highlight the need for rigorous, evidence-based selection of genes for clinical test panels.
Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Sarcomeres , Adolescent , Adult , Aged , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/pathology , Case-Control Studies , Female , Genetic Association Studies , Humans , Male , Middle Aged , Whole Genome Sequencing , Young AdultABSTRACT
Noonan syndrome (NS) is characterised by distinctive facial features, heart defects, variable degrees of intellectual disability and other phenotypic manifestations. Although the mode of inheritance is typically dominant, recent studies indicate LZTR1 may be associated with both dominant and recessive forms. Seeking to describe the phenotypic characteristics of LZTR1-associated NS, we searched for likely pathogenic variants using two approaches. First, scrutiny of exomes from 9624 patients recruited by the Deciphering Developmental Disorders (DDDs) study uncovered six dominantly-acting mutations (p.R97L; p.Y136C; p.Y136H, p.N145I, p.S244C; p.G248R) of which five arose de novo, and three patients with compound-heterozygous variants (p.R210*/p.V579M; p.R210*/p.D531N; c.1149+1G>T/p.R688C). One patient also had biallelic loss-of-function mutations in NEB, consistent with a composite phenotype. After removing this complex case, analysis of human phenotype ontology terms indicated significant phenotypic similarities (P = 0.0005), supporting a causal role for LZTR1. Second, targeted sequencing of eight unsolved NS-like cases identified biallelic LZTR1 variants in three further subjects (p.W469*/p.Y749C, p.W437*/c.-38T>A and p.A461D/p.I462T). Our study strengthens the association of LZTR1 with NS, with de novo mutations clustering around the KT1-4 domains. Although LZTR1 variants explain ~0.1% of cases across the DDD cohort, the gene is a relatively common cause of unsolved NS cases where recessive inheritance is suspected.
Subject(s)
Exome , Noonan Syndrome/genetics , Transcription Factors/genetics , Adolescent , Alleles , Child , Child, Preschool , Cohort Studies , Female , Gene Ontology , Genes, Dominant , Genes, Recessive , Heterozygote , Humans , Infant , Male , Mutation , Noonan Syndrome/physiopathology , Pedigree , PhenotypeABSTRACT
OBJECTIVES: To report the baseline results of a longitudinal psychosocial study that forms part of the IMPACT study, a multi-national investigation of targeted prostate cancer (PCa) screening among men with a known pathogenic germline mutation in the BRCA1 or BRCA2 genes. PARTICPANTS AND METHODS: Men enrolled in the IMPACT study were invited to complete a questionnaire at collaborating sites prior to each annual screening visit. The questionnaire included sociodemographic characteristics and the following measures: the Hospital Anxiety and Depression Scale (HADS), Impact of Event Scale (IES), 36-item short-form health survey (SF-36), Memorial Anxiety Scale for Prostate Cancer, Cancer Worry Scale-Revised, risk perception and knowledge. The results of the baseline questionnaire are presented. RESULTS: A total of 432 men completed questionnaires: 98 and 160 had mutations in BRCA1 and BRCA2 genes, respectively, and 174 were controls (familial mutation negative). Participants' perception of PCa risk was influenced by genetic status. Knowledge levels were high and unrelated to genetic status. Mean scores for the HADS and SF-36 were within reported general population norms and mean IES scores were within normal range. IES mean intrusion and avoidance scores were significantly higher in BRCA1/BRCA2 carriers than in controls and were higher in men with increased PCa risk perception. At the multivariate level, risk perception contributed more significantly to variance in IES scores than genetic status. CONCLUSION: This is the first study to report the psychosocial profile of men with BRCA1/BRCA2 mutations undergoing PCa screening. No clinically concerning levels of general or cancer-specific distress or poor quality of life were detected in the cohort as a whole. A small subset of participants reported higher levels of distress, suggesting the need for healthcare professionals offering PCa screening to identify these risk factors and offer additional information and support to men seeking PCa screening.