Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Immunol ; 42(1): 585-613, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38424470

ABSTRACT

Alzheimer disease (AD) is the most common neurodegenerative disease, and with no efficient curative treatment available, its medical, social, and economic burdens are expected to dramatically increase. AD is historically characterized by amyloid ß (Aß) plaques and tau neurofibrillary tangles, but over the last 25 years chronic immune activation has been identified as an important factor contributing to AD pathogenesis. In this article, we review recent and important advances in our understanding of the significance of immune activation in the development of AD. We describe how brain-resident macrophages, the microglia, are able to detect Aß species and be activated, as well as the consequences of activated microglia in AD pathogenesis. We discuss transcriptional changes of microglia in AD, their unique heterogeneity in humans, and emerging strategies to study human microglia. Finally, we expose, beyond Aß and microglia, the role of peripheral signals and different cell types in immune activation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Microglia , Alzheimer Disease/immunology , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Humans , Animals , Microglia/immunology , Microglia/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/immunology , Brain/immunology , Brain/metabolism , Brain/pathology , Macrophages/immunology , Macrophages/metabolism
2.
Cell ; 184(20): 5089-5106.e21, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34555357

ABSTRACT

Microglia are the CNS resident immune cells that react to misfolded proteins through pattern recognition receptor ligation and activation of inflammatory pathways. Here, we studied how microglia handle and cope with α-synuclein (α-syn) fibrils and their clearance. We found that microglia exposed to α-syn establish a cellular network through the formation of F-actin-dependent intercellular connections, which transfer α-syn from overloaded microglia to neighboring naive microglia where the α-syn cargo got rapidly and effectively degraded. Lowering the α-syn burden attenuated the inflammatory profile of microglia and improved their survival. This degradation strategy was compromised in cells carrying the LRRK2 G2019S mutation. We confirmed the intercellular transfer of α-syn assemblies in microglia using organotypic slice cultures, 2-photon microscopy, and neuropathology of patients. Together, these data identify a mechanism by which microglia create an "on-demand" functional network in order to improve pathogenic α-syn clearance.


Subject(s)
Cell Membrane Structures/metabolism , Microglia/metabolism , Proteolysis , alpha-Synuclein/metabolism , Actins/metabolism , Aged , Aged, 80 and over , Animals , Apoptosis , Cytoskeleton/metabolism , Down-Regulation , Female , Humans , Inflammation/genetics , Inflammation/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Mice, Inbred C57BL , Microglia/pathology , Microglia/ultrastructure , Mitochondria/metabolism , Nanotubes , Protein Aggregates , Reactive Oxygen Species/metabolism , Transcriptome/genetics
3.
Immunity ; 57(4): 790-814, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599171

ABSTRACT

Activation of the innate immune system following pattern recognition receptor binding has emerged as one of the major pathogenic mechanisms in neurodegenerative disease. Experimental, epidemiological, pathological, and genetic evidence underscores the meaning of innate immune activation during the prodromal as well as clinical phases of several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Importantly, innate immune activation and the subsequent release of inflammatory mediators contribute mechanistically to other hallmarks of neurodegenerative diseases such as aberrant proteostatis, pathological protein aggregation, cytoskeleton abnormalities, altered energy homeostasis, RNA and DNA defects, and synaptic and network disbalance and ultimately to the induction of neuronal cell death. In this review, we discuss common mechanisms of innate immune activation in neurodegeneration, with particular emphasis on the pattern recognition receptors (PRRs) and other receptors involved in the detection of damage-associated molecular patterns (DAMPs).


Subject(s)
Neurodegenerative Diseases , Humans , Receptors, Pattern Recognition , Immune System , Inflammation Mediators , Immunity, Innate
5.
Cell ; 165(4): 773-5, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27153489

ABSTRACT

Homeostatic control of brain metabolism is essential for neuronal activity. Jais et al., (2016) report that reduced brain glucose uptake elicited by a high-fat diet self-corrects by the recruitment of peripheral, VEGF-producing macrophages to the blood-brain barrier. Their findings further suggest that restoring brain glucose availability might help protect from cognitive impairment in Alzheimer's disease.


Subject(s)
Brain/metabolism , Glucose/metabolism , Alzheimer Disease/metabolism , Diet, High-Fat , Humans , Obesity/metabolism
6.
Nat Immunol ; 18(8): 826-831, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28722720

ABSTRACT

Biologists, physicians and immunologists have contributed to the understanding of the cellular participants and biological pathways involved in inflammation. Here, we provide a general guide to the cellular and humoral contributors to inflammation as well as to the pathways that characterize inflammation in specific organs and tissues.


Subject(s)
Communicable Diseases/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Inflammation/immunology , Acute Disease , Chronic Disease , Humans
8.
Nat Immunol ; 16(3): 229-36, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25689443

ABSTRACT

Alzheimer's disease (AD) is the world's most common dementing illness, affecting over 150 million patients. Classically AD has been viewed as a neurodegenerative disease of the elderly, characterized by the extracellular deposition of misfolded amyloid-ß (Aß) peptide and the intracellular formation of neurofibrillary tangles. Only recently has neuroinflammation emerged as an important component of AD pathology. Experimental, genetic and epidemiological data now indicate a crucial role for activation of the innate immune system as a disease-promoting factor. The sustained formation and deposition of Aß aggregates causes chronic activation of the immune system and disturbance of microglial clearance functions. Here we review advances in the molecular understanding of the inflammatory response in AD that point to novel therapeutic approaches for the treatment of this devastating disease.


Subject(s)
Alzheimer Disease/immunology , Immunity, Innate/immunology , Animals , Humans , Inflammation/immunology
9.
Immunity ; 48(2): 195-197, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29466750

ABSTRACT

In this issue of Immunity, Mrdjen et al. (2018) use high-dimensional single-cell proteomics and high parametric mass cytometry to provide insight into the long-lasting issue of how to identify and characterize both resident and recruited leukocyte populations in healthy, aged, and diseased CNS.


Subject(s)
Microglia , Proteomics , Central Nervous System Diseases , Humans , Leukocytes
10.
EMBO J ; 40(24): e108662, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34825707

ABSTRACT

Chronic neuroinflammation is a pathogenic component of Alzheimer's disease (AD) that may limit the ability of the brain to clear amyloid deposits and cellular debris. Tight control of the immune system is therefore key to sustain the ability of the brain to repair itself during homeostasis and disease. The immune-cell checkpoint receptor/ligand pair PD-1/PD-L1, known for their inhibitory immune function, is expressed also in the brain. Here, we report upregulated expression of PD-L1 and PD-1 in astrocytes and microglia, respectively, surrounding amyloid plaques in AD patients and in the APP/PS1 AD mouse model. We observed juxtamembrane shedding of PD-L1 from astrocytes, which may mediate ectodomain signaling to PD-1-expressing microglia. Deletion of microglial PD-1 evoked an inflammatory response and compromised amyloid-ß peptide (Aß) uptake. APP/PS1 mice deficient for PD-1 exhibited increased deposition of Aß, reduced microglial Aß uptake, and decreased expression of the Aß receptor CD36 on microglia. Therefore, ineffective immune regulation by the PD-1/PD-L1 axis contributes to Aß plaque deposition during chronic neuroinflammation in AD.


Subject(s)
Alzheimer Disease/immunology , Amyloid beta-Protein Precursor/genetics , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Up-Regulation , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/toxicity , Animals , Astrocytes/metabolism , CD36 Antigens/metabolism , Case-Control Studies , Disease Models, Animal , Female , Gene Deletion , HEK293 Cells , HeLa Cells , Humans , Male , Mice , Mice, Transgenic , Microglia/metabolism , Middle Aged
11.
Brain ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743817

ABSTRACT

Single-value scores reflecting the deviation from (FADE score) or similarity with (SAME score) prototypical novelty-related and memory-related functional magnetic resonance imaging (fMRI) activation patterns in young adults have been proposed as imaging biomarkers of healthy neurocognitive aging. Here, we tested the utility of these scores as potential diagnostic and prognostic markers in Alzheimer's disease (AD) and risk states like mild cognitive impairment (MCI) or subjective cognitive decline (SCD). To this end, we analyzed subsequent memory fMRI data from individuals with SCD, MCI, and AD dementia as well as healthy controls (HC) and first-degree relatives of AD dementia patients (AD-rel) who participated in the multi-center DELCODE study (N = 468). Based on the individual participants' whole-brain fMRI novelty and subsequent memory responses, we calculated the FADE and SAME scores and assessed their association with AD risk stage, neuropsychological test scores, CSF amyloid positivity, and ApoE genotype. Memory-based FADE and SAME scores showed a considerably larger deviation from a reference sample of young adults in the MCI and AD dementia groups compared to HC, SCD and AD-rel. In addition, novelty-based scores significantly differed between the MCI and AD dementia groups. Across the entire sample, single-value scores correlated with neuropsychological test performance. The novelty-based SAME score further differed between Aß-positive and Aß-negative individuals in SCD and AD-rel, and between ApoE ε4 carriers and non-carriers in AD-rel. Hence, FADE and SAME scores are associated with both cognitive performance and individual risk factors for AD. Their potential utility as diagnostic and prognostic biomarkers warrants further exploration, particularly in individuals with SCD and healthy relatives of AD dementia patients.

12.
Nature ; 575(7784): 669-673, 2019 11.
Article in English | MEDLINE | ID: mdl-31748742

ABSTRACT

Alzheimer's disease is characterized by the accumulation of amyloid-beta in plaques, aggregation of hyperphosphorylated tau in neurofibrillary tangles and neuroinflammation, together resulting in neurodegeneration and cognitive decline1. The NLRP3 inflammasome assembles inside of microglia on activation, leading to increased cleavage and activity of caspase-1 and downstream interleukin-1ß release2. Although the NLRP3 inflammasome has been shown to be essential for the development and progression of amyloid-beta pathology in mice3, the precise effect on tau pathology remains unknown. Here we show that loss of NLRP3 inflammasome function reduced tau hyperphosphorylation and aggregation by regulating tau kinases and phosphatases. Tau activated the NLRP3 inflammasome and intracerebral injection of fibrillar amyloid-beta-containing brain homogenates induced tau pathology in an NLRP3-dependent manner. These data identify an important role of microglia and NLRP3 inflammasome activation in the pathogenesis of tauopathies and support the amyloid-cascade hypothesis in Alzheimer's disease, demonstrating that neurofibrillary tangles develop downstream of amyloid-beta-induced microglial activation.


Subject(s)
Inflammasomes/metabolism , Microglia/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , tau Proteins/metabolism , Animals , Cyclin-Dependent Kinase 5/metabolism , Gene Expression Regulation/genetics , Humans , Inflammasomes/genetics , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phosphorylation , Protein Aggregation, Pathological/physiopathology , tau Proteins/genetics
13.
Nat Rev Neurosci ; 20(3): 187, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30742056

ABSTRACT

In the originally published version of this article, the competing interests statement indicated that the authors had no competing interests; however, this statement was incorrect. The statement should have read as follows: 'M.H. receives a consultation fee from IFM Therapeutics, LLC for consultations regarding the pathogenesis and interventional strategies of neurodegenerative disease. E.L. is a scientific co-founder and consultant to IFM Therapeutics. R.M.M. declares no competing interests.' This error has been corrected in the HTML and PDF versions of the article.

14.
Eur J Neurol ; 31(4): e16204, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240416

ABSTRACT

BACKGROUND AND PURPOSE: In 2016, we concluded a randomized controlled trial testing 1 mg rasagiline per day add-on to standard therapy in 252 amyotrophic lateral sclerosis (ALS) patients. This article aims at better characterizing ALS patients who could possibly benefit from rasagiline by reporting new subgroup analysis and genetic data. METHODS: We performed further exploratory in-depth analyses of the study population and investigated the relevance of single nucleotide polymorphisms (SNPs) related to the dopaminergic system. RESULTS: Placebo-treated patients with very slow disease progression (loss of Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised [ALSFRS-R] per month before randomization of ≤0.328 points) showed a per se survival probability after 24 months of 0.85 (95% confidence interval = 0.65-0.94). The large group of intermediate to fast progressing ALS patients showed a prolonged survival in the rasagiline group compared to placebo after 6 and 12 months (p = 0.02, p = 0.04), and a reduced decline of ALSFRS-R after 18 months (p = 0.049). SNP genotypes in the MAOB gene and DRD2 gene did not show clear associations with rasagiline treatment effects. CONCLUSIONS: These results underline the need to consider individual disease progression at baseline in future ALS studies. Very slow disease progressors compromise the statistical power of studies with treatment durations of 12-18 months using clinical endpoints. Analysis of MAOB and DRD2 SNPs revealed no clear relationship to any outcome parameter. More insights are expected from future studies elucidating whether patients with DRD2CC genotype (Rs2283265) show a pronounced benefit from treatment with rasagiline, pointing to the opportunities precision medicine could open up for ALS patients in the future.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/complications , Indans/therapeutic use , Disease Progression
15.
Environ Sci Technol ; 58(9): 4181-4192, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38373301

ABSTRACT

Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease, which is currently diagnosed via clinical symptoms and nonspecific biomarkers (such as Aß1-42, t-Tau, and p-Tau) measured in cerebrospinal fluid (CSF), which alone do not provide sufficient insights into disease progression. In this pilot study, these biomarkers were complemented with small-molecule analysis using non-target high-resolution mass spectrometry coupled with liquid chromatography (LC) on the CSF of three groups: AD, mild cognitive impairment (MCI) due to AD, and a non-demented (ND) control group. An open-source cheminformatics pipeline based on MS-DIAL and patRoon was enhanced using CSF- and AD-specific suspect lists to assist in data interpretation. Chemical Similarity Enrichment Analysis revealed a significant increase of hydroxybutyrates in AD, including 3-hydroxybutanoic acid, which was found at higher levels in AD compared to MCI and ND. Furthermore, a highly sensitive target LC-MS method was used to quantify 35 bile acids (BAs) in the CSF, revealing several statistically significant differences including higher dehydrolithocholic acid levels and decreased conjugated BA levels in AD. This work provides several promising small-molecule hypotheses that could be used to help track the progression of AD in CSF samples.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Pilot Projects , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Biomarkers , Disease Progression
16.
Brain ; 146(5): 2075-2088, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36288546

ABSTRACT

Previous studies have shown that the cholinergic nucleus basalis of Meynert and its white matter projections are affected in Alzheimer's disease dementia and mild cognitive impairment. However, it is still unknown whether these alterations can be found in individuals with subjective cognitive decline, and whether they are more pronounced than changes found in conventional brain volumetric measurements. To address these questions, we investigated microstructural alterations of two major cholinergic pathways in individuals along the Alzheimer's disease continuum using an in vivo model of the human cholinergic system based on neuroimaging. We included 402 participants (52 Alzheimer's disease, 66 mild cognitive impairment, 172 subjective cognitive decline and 112 healthy controls) from the Deutsches Zentrum für Neurodegenerative Erkrankungen Longitudinal Cognitive Impairment and Dementia Study. We modelled the cholinergic white matter pathways with an enhanced diffusion neuroimaging pipeline that included probabilistic fibre-tracking methods and prior anatomical knowledge. The integrity of the cholinergic white matter pathways was compared between stages of the Alzheimer's disease continuum, in the whole cohort and in a CSF amyloid-beta stratified subsample. The discriminative power of the integrity of the pathways was compared to the conventional volumetric measures of hippocampus and nucleus basalis of Meynert, using a receiver operating characteristics analysis. A multivariate model was used to investigate the role of these pathways in relation to cognitive performance. We found that the integrity of the cholinergic white matter pathways was significantly reduced in all stages of the Alzheimer's disease continuum, including individuals with subjective cognitive decline. The differences involved posterior cholinergic white matter in the subjective cognitive decline stage and extended to anterior frontal white matter in mild cognitive impairment and Alzheimer's disease dementia stages. Both cholinergic pathways and conventional volumetric measures showed higher predictive power in the more advanced stages of the disease, i.e. mild cognitive impairment and Alzheimer's disease dementia. In contrast, the integrity of cholinergic pathways was more informative in distinguishing subjective cognitive decline from healthy controls, as compared with the volumetric measures. The multivariate model revealed a moderate contribution of the cholinergic white matter pathways but not of volumetric measures towards memory tests in the subjective cognitive decline and mild cognitive impairment stages. In conclusion, we demonstrated that cholinergic white matter pathways are altered already in subjective cognitive decline individuals, preceding the more widespread alterations found in mild cognitive impairment and Alzheimer's disease. The integrity of the cholinergic pathways identified the early stages of Alzheimer's disease better than conventional volumetric measures such as hippocampal volume or volume of cholinergic nucleus basalis of Meynert.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Alzheimer Disease/psychology , Brain , Cognitive Dysfunction/psychology , Cholinergic Agents
17.
Alzheimers Dement ; 20(4): 2632-2652, 2024 04.
Article in English | MEDLINE | ID: mdl-38375983

ABSTRACT

INTRODUCTION: The most significant genetic risk factor for late-onset Alzheimer's disease (AD) is APOE4, with evidence for gain- and loss-of-function mechanisms. A clinical need remains for therapeutically relevant tools that potently modulate APOE expression. METHODS: We optimized small interfering RNAs (di-siRNA, GalNAc) to potently silence brain or liver Apoe and evaluated the impact of each pool of Apoe on pathology. RESULTS: In adult 5xFAD mice, siRNAs targeting CNS Apoe efficiently silenced Apoe expression and reduced amyloid burden without affecting systemic cholesterol, confirming that potent silencing of brain Apoe is sufficient to slow disease progression. Mechanistically, silencing Apoe reduced APOE-rich amyloid cores and activated immune system responses. DISCUSSION: These results establish siRNA-based modulation of Apoe as a viable therapeutic approach, highlight immune activation as a key pathway affected by Apoe modulation, and provide the technology to further evaluate the impact of APOE silencing on neurodegeneration.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoprotein E4/genetics , Amyloid/metabolism , Brain/pathology , Amyloidogenic Proteins/metabolism , Amyloid beta-Peptides/metabolism , Mice, Transgenic
18.
Glia ; 71(2): 168-186, 2023 02.
Article in English | MEDLINE | ID: mdl-36373840

ABSTRACT

Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.


Subject(s)
Epilepsy, Temporal Lobe , Status Epilepticus , Mice , Animals , Humans , Epilepsy, Temporal Lobe/pathology , Astrocytes/pathology , Tumor Necrosis Factor-alpha , Microglia/pathology , Hippocampus/pathology , Seizures/pathology , Status Epilepticus/pathology , Kainic Acid/toxicity , Disease Models, Animal , Mice, Knockout
19.
J Neurochem ; 166(3): 517-533, 2023 08.
Article in English | MEDLINE | ID: mdl-37278117

ABSTRACT

The highest risk factor for the development of neurodegenerative diseases like tauopathies is aging. Many physiological decrements underlying aging are linked to cellular senescence. Senescent cells are characterized by an irreversible growth arrest and formation of a senescence-associated secretory phenotype (SASP), a proinflammatory secretome that modifies the cellular microenvironment and contributes to tissue deterioration. Microglia, the innate immune cells in the brain, can enter a senescent state during aging. In addition, senescent microglia have been identified in the brains of tau-transgenic mice and patients suffering from tauopathies. While the contribution of senescent microglia to the development of tauopathies and other neurodegenerative diseases is a growing area of research, the effect of tau on microglial senescence remains elusive. Here, we exposed primary microglia to 5 and 15 nanomolar (nM) of monomeric tau for 18 h, followed by a recovery period of 48 h. Using multiple senescence markers, we found that exposure to 15 nM, but not 5 nM of tau increased levels of cell cycle arrest and a DNA damage marker, induced loss of the nuclear envelope protein lamin B1 and the histone marker H3K9me3, impaired tau clearance and migration, altered the cell morphology and resulted in formation of a SASP. Taken together, we show that exposure to tau can lead to microglial senescence. As senescent cells were shown to negatively impact tau pathologies, this suggests the presence of a vicious circle, which should be further investigated in the future.


Subject(s)
Microglia , Tauopathies , Mice , Animals , Aging/genetics , Cellular Senescence/physiology , Biomarkers , Mice, Transgenic
20.
J Neurochem ; 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36799439

ABSTRACT

Alzheimer's disease (AD) is associated with the cerebral deposition of Amyloid-ß (Aß) peptide, which leads to NLRP3 inflammasome activation and subsequent release of interleukin-1ß (IL-1ß) and interleukin-18 (IL-18). NLRP3 reduction has been found to increase microglial clearance, protect from synapse loss, and suppress both the changes to synaptic plasticity and spatial memory dysfunction observed in murine AD models. Here, we test whether NLRP3-directed antisense oligonucleotides (ASOs) can be harnessed as immune modulators in primary murine microglia and human THP-1 cells. NLRP3 mRNA degradation was achieved at 72 h of ASO treatment in primary murine microglia. Consequently, NLRP3-directed ASOs significantly reduced the levels of cleaved caspase-1 and mature IL-1ß when microglia were either activated by LPS and nigericin or LPS and Aß. In human THP-1 cells NLRP3-targeted ASOs also significantly reduced the LPS plus nigericin- or LPS plus Aß-induced release of mature IL-1ß. Together, NLRP3-directed ASOs can suppress NLRP3 inflammasome activity and subsequent release of IL-1ß in primary murine microglia and THP-1 cells. ASOs may represent a new and alternative approach to modulate NLRP3 inflammasome activation in neurodegenerative diseases, in addition to attempts to inhibit the complex pharmacologically.

SELECTION OF CITATIONS
SEARCH DETAIL