Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Plant J ; 84(5): 914-24, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26461850

ABSTRACT

During Agrobacterium tumefaciens-mediated transformation of plant cells a part of the tumour-inducing plasmid, T-DNA, is integrated into the host genome. In addition, a number of virulence proteins are translocated into the host cell. The virulence protein VirE3 binds to the Arabidopsis thaliana pBrp protein, a plant-specific general transcription factor of the TFIIB family. To study a possible role for VirE3 in transcriptional regulation, we stably expressed virE3 in A. thaliana under control of a tamoxifen-inducible promoter. By RNA sequencing we showed that upon expression of virE3 the RNA levels of 607 genes were increased more than three-fold and those of 132 genes decreased more than three-fold. One of the strongly activated genes was that encoding VBF (At1G56250), an F-box protein that may affect the levels of the VirE2 and VIP1 proteins. Using Arabidopsis cell suspension protoplasts we showed that VirE3 stimulates the VBF promoter, especially when co-expressed with pBrp. Although pBrp is localized at the external surface of plastids, co-expression of VirE3 and pBrp in Arabidopsis cell suspension protoplasts resulted in the accumulation of pBrp in the nucleus. Our results suggest that VirE3 affects the transcriptional machinery of the host cell to favour the transformation process.


Subject(s)
Agrobacterium tumefaciens/pathogenicity , Bacterial Proteins/physiology , Gene Expression Regulation, Plant , Virulence Factors/physiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/analysis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Profiling , Protoplasts/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Transcription Factors/analysis , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation , Transformation, Genetic , Virulence Factors/genetics , Virulence Factors/metabolism
2.
Gen Comp Endocrinol ; 225: 185-196, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26255685

ABSTRACT

Complete sexual maturation of European eels (Anguilla anguilla) in captivity can only be achieved via injections with gonadotropins. For female eels this procedure takes 4-6months and the response ranges from "unresponsive" to final maturation and ovulation. Reproductive success could be significantly increased via early selection of responders based on predictive markers and minimally invasive sampling methods. To get a better understanding of the genetic background of ovarian maturation of the European eel we performed a pilot deep-sequencing transcriptome analysis of ovarian tissue derived from a yellow eel, a prepubertal silver eel and a post-spawning matured eel. Two key players in steroidogenesis were strongly correlated with advanced sexual maturation, namely P450c17 and liver receptor homolog-1, suggesting that blood plasma steroids might qualify as minimally invasive markers for early detection of responders. Since the predictive value of plasma sex steroid levels for final maturation of the European eel had not yet been carefully examined, we performed an extensive artificial maturation trial. Farmed silver eels were treated with pituitary extracts and sampled at multiple time intervals. Expression of steroidogenesis-related genes in ovarian tissue of responding and non-responding eels after four weekly injections with pituitary extract was compared using a custom-built microarray and RNAseq. Increased expression of 17ß-hsd1 was strongly linked to sexual maturation. Blood plasma levels of sex steroids were measured using ELISAs. We show that a 2.5-fold increase in blood-plasma estradiol level after 4 weekly pituitary extract injections is a strong predictor of final sexual maturation of female European eel.


Subject(s)
Anguilla/metabolism , Ovary/metabolism , Sexual Maturation/physiology , Transcriptome , Anguilla/blood , Anguilla/genetics , Animals , Biomarkers/metabolism , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Pituitary Gland/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Steroid 17-alpha-Hydroxylase/genetics , Steroid 17-alpha-Hydroxylase/metabolism
3.
Proc Natl Acad Sci U S A ; 110(51): 20651-6, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24297900

ABSTRACT

Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.


Subject(s)
Adaptation, Biological/physiology , Elapid Venoms , Elapidae , Evolution, Molecular , Genome/physiology , Transcriptome/physiology , Animals , Elapid Venoms/genetics , Elapid Venoms/metabolism , Elapidae/genetics , Elapidae/metabolism , Exocrine Glands/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
4.
Proc Natl Acad Sci U S A ; 110(51): 20645-50, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24297902

ABSTRACT

Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.


Subject(s)
Adaptation, Physiological/physiology , Boidae , Evolution, Molecular , Gene Expression Regulation/physiology , Genome/physiology , Transcription, Genetic/physiology , Animals , Boidae/genetics , Boidae/metabolism , Cell Cycle/physiology , Humans , Organ Specificity/physiology
5.
Physiol Genomics ; 46(21): 808-20, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25228281

ABSTRACT

RNA-Seq has become a widely used method to study transcriptomes, and it is now possible to perform RNA-Seq on almost any sample. Nevertheless, samples obtained from small cell populations are particularly challenging, as biases associated with low amounts of input RNA can have strong and detrimental effects on downstream analyses. Here we compare different methods to normalize RNA-Seq data obtained from minimal input material. Using RNA from isolated medaka pituitary cells, we have amplified material from six samples before sequencing. Both synthetic and real data are used to evaluate different normalization methods to obtain a robust and reliable pipeline for analysis of RNA-Seq data from samples with very limited input material. The analysis outlined here shows that quantile normalization outperforms other more commonly used normalization procedures when using amplified RNA as input and will benefit researchers employing low amounts of RNA in similar experiments.


Subject(s)
Oryzias/genetics , Sequence Analysis, RNA/methods , Animals , Animals, Genetically Modified , Cells, Cultured , Female , Gene Expression , Green Fluorescent Proteins/genetics , Pituitary Gland/cytology , RNA/isolation & purification , Reproducibility of Results
6.
Bioinformatics ; 27(4): 578-9, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21149342

ABSTRACT

SUMMARY: De novo assembly tools play a main role in reconstructing genomes from next-generation sequencing (NGS) data and usually yield a number of contigs. Using paired-read sequencing data it is possible to assess the order, distance and orientation of contigs and combine them into so-called scaffolds. Although the latter process is a crucial step in finishing genomes, scaffolding algorithms are often built-in functions in de novo assembly tools and cannot be independently controlled. We here present a new tool, called SSPACE, which is a stand-alone scaffolder of pre-assembled contigs using paired-read data. Main features are: a short runtime, multiple library input of paired-end and/or mate pair datasets and possible contig extension with unmapped sequence reads. SSPACE shows promising results on both prokaryote and eukaryote genomic testsets where the amount of initial contigs was reduced by at least 75%.


Subject(s)
Algorithms , Contig Mapping , Genomics/methods , Sequence Analysis, DNA/methods , Software , Gene Library , Genome
7.
Fish Shellfish Immunol ; 31(5): 716-24, 2011 Nov.
Article in English | MEDLINE | ID: mdl-20816807

ABSTRACT

Salmonella enterica serovar Typhimurium (S. typhimurium) bacteria cause an inflammatory and lethal infection in zebrafish embryos. To characterize the embryonic innate host response at the transcriptome level, we have extended and validated previous microarray data by Illumina next-generation sequencing analysis. We obtained 10 million sequence reads from control and Salmonella-infected zebrafish embryos using a tag-based sequencing method (DGE or Tag-Seq) and 15 million reads using whole transcript sequencing (RNA-Seq), which respectively mapped to circa 65% and 85% of 28,716 known Ensembl transcripts. Both sequencing methods showed a strong correlation of sequence read counts per transcript and an overlap of 241 transcripts differentially expressed in response to infection. A lower overlap of 165 transcripts was observed with previous microarray data. Based on the combined sequencing-based and microarray-based transcriptome data we compiled an annotated reference set of infection-responsive genes in zebrafish embryos, encoding transcription factors, signal transduction proteins, cytokines and chemokines, complement factors, proteins involved in apoptosis and proteolysis, proteins with anti-microbial activities, as well as many known or novel proteins not previously linked to the immune response. Furthermore, by comparison of the deep sequencing data of S. typhimurium infection in zebrafish embryos with previous deep sequencing data of Mycobacterium marinum infection in adult zebrafish we derived a common set of infection-responsive genes. This gene set consists of known and putative innate host defense genes that are expressed both in the absence and presence of a fully developed adaptive immune system and that provide a valuable reference for future studies of host-pathogen interactions using zebrafish infection models.


Subject(s)
Fish Diseases/immunology , High-Throughput Nucleotide Sequencing , Immunity, Innate/genetics , Salmonella Infections, Animal/immunology , Transcriptome , Zebrafish/genetics , Zebrafish/immunology , Animals , Embryo, Nonmammalian/immunology , Host-Pathogen Interactions/genetics , Molecular Sequence Annotation , Reproducibility of Results
8.
Sci Data ; 8(1): 279, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711832

ABSTRACT

The pituitary is the vertebrate endocrine gland responsible for the production and secretion of several essential peptide hormones. These, in turn, control many aspects of an animal's physiology and development, including growth, reproduction, homeostasis, metabolism, and stress responses. In teleost fish, each hormone is presumably produced by a specific cell type. However, key details on the regulation of, and communication between these cell types remain to be resolved. We have therefore used single-cell sequencing to generate gene expression profiles for 2592 and 3804 individual cells from the pituitaries of female and male adult medaka (Oryzias latipes), respectively. Based on expression profile clustering, we define 15 and 16 distinct cell types in the female and male pituitary, respectively, of which ten are involved in the production of a single peptide hormone. Collectively, our data provide a high-quality reference for studies on pituitary biology and the regulation of hormone production, both in fish and in vertebrates in general.


Subject(s)
Hormones/biosynthesis , Oryzias , Pituitary Gland/cytology , RNA-Seq , Single-Cell Analysis , Animals , Animals, Genetically Modified , Female , Male , Oryzias/physiology , Transcriptome
9.
Genome Biol Evol ; 13(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34791190

ABSTRACT

Molecular genetic data have recently been incorporated in attempts to reconstruct the ecology of the ancestral snake, though this has been limited by a paucity of data for one of the two main extant snake taxa, the highly fossorial Scolecophidia. Here we present and analyze vision genes from the first eye-transcriptomic and genome-wide data for Scolecophidia, for Anilios bicolor, and A. bituberculatus, respectively. We also present immunohistochemistry data for retinal anatomy and visual opsin-gene expression in Anilios. Analyzed in the context of 19 lepidosaurian genomes and 12 eye transcriptomes, the new genome-wide and transcriptomic data provide evidence for a much more reduced visual system in Anilios than in non-scolecophidian (=alethinophidian) snakes and in lizards. In Anilios, there is no evidence of the presence of 7 of the 12 genes associated with alethinophidian photopic (cone) phototransduction. This indicates extensive gene loss and many of these candidate gene losses occur also in highly fossorial mammals with reduced vision. Although recent phylogenetic studies have found evidence for scolecophidian paraphyly, the loss in Anilios of visual genes that are present in alethinophidians implies that the ancestral snake had a better-developed visual system than is known for any extant scolecophidian.


Subject(s)
Lizards , Transcriptome , Animals , Evolution, Molecular , Lizards/genetics , Mammals/genetics , Opsins/genetics , Phylogeny , Snakes/genetics
10.
Front Endocrinol (Lausanne) ; 12: 719843, 2021.
Article in English | MEDLINE | ID: mdl-34497587

ABSTRACT

In vertebrates, the anterior pituitary plays a crucial role in regulating several essential physiological processes via the secretion of at least seven peptide hormones by different endocrine cell types. Comparative and comprehensive knowledge of the spatial distribution of those endocrine cell types is required to better understand their physiological functions. Using medaka as a model and several combinations of multi-color fluorescence in situ hybridization, we present the first 3D atlas revealing the gland-wide distribution of seven endocrine cell populations: lactotropes, thyrotropes, Lh and Fsh gonadotropes, somatotropes, and pomca-expressing cells (corticotropes and melanotropes) in the anterior pituitary of a teleost fish. By combining in situ hybridization and immunofluorescence techniques, we deciphered the location of corticotropes and melanotropes within the pomca-expressing cell population. The 3D localization approach reveals sexual dimorphism of tshba-, pomca-, and lhb-expressing cells in the adult medaka pituitary. Finally, we show the existence of bi-hormonal cells co-expressing lhb-fshb, fshb-tshba and lhb-sl using single-cell transcriptomics analysis and in situ hybridization. This study offers a solid basis for future comparative studies of the teleost pituitary and its functional plasticity.


Subject(s)
Atlases as Topic , Oryzias/anatomy & histology , Pituitary Gland/anatomy & histology , Anatomy, Artistic , Animals , Female , Imaging, Three-Dimensional , Male , Sex Characteristics
11.
R Soc Open Sci ; 7(1): 191640, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32218982

ABSTRACT

It is well-established that sustained exercise training can enhance brain plasticity and boost cognitive performance in mammals, but this phenomenon has not received much attention in fish. The aim of this study was to determine whether sustained swimming exercise can enhance brain plasticity in juvenile Atlantic salmon. Brain plasticity was assessed by both mapping the whole telencephalon transcriptome and conducting telencephalic region-specific microdissections on target genes. We found that 1772 transcripts were differentially expressed between the exercise and control groups. Gene ontology (GO) analysis identified 195 and 272 GO categories with a significant overrepresentation of up- or downregulated transcripts, respectively. A multitude of these GO categories was associated with neuronal excitability, neuronal signalling, cell proliferation and neurite outgrowth (i.e. cognition-related neuronal markers). Additionally, we found an increase in proliferating cell nuclear antigen (pcna) after both three and eight weeks of exercise in the equivalent to the hippocampus in fish. Furthermore, the expression of the neural plasticity markers synaptotagmin (syt) and brain-derived neurotrophic factor (bdnf) were also increased due to exercise in the equivalent to the lateral septum in fish. In conclusion, this is the first time that swimming exercise has been directly linked to increased telencephalic neurogenesis and neural plasticity in a teleost, and our results pave the way for future studies on exercise-induced neuroplasticity in fish.

12.
Sci Rep ; 9(1): 7911, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31114003

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

13.
Biosystems ; 88(1-2): 156-62, 2007 Mar.
Article in English | MEDLINE | ID: mdl-16860927

ABSTRACT

One line of DNA computing research focuses on parallel search algorithms, which can be used to solve many optimization problems. DNA in solution can provide an enormous molecular library, which can be searched by molecular biological techniques. We have implemented such a parallel search for solutions to knapsack problems, which ask for the best way to pack a knapsack of limited volume. Several instances of knapsack problems were solved using DNA. We demonstrate how the computations can be extended by in vivo translation of the DNA library into protein. This combination of DNA and protein allows for multi-criterion optimization. The knapsack computations performed can then be seen as protein optimizations, one of the most complex computations performed by natural systems.


Subject(s)
Computers, Molecular , Algorithms , Computers, Molecular/statistics & numerical data , Gene Library , Plasmids/genetics , Protein Biosynthesis , Systems Biology
14.
PLoS One ; 12(3): e0174236, 2017.
Article in English | MEDLINE | ID: mdl-28358915

ABSTRACT

The rapidly growing world population has a greatly increasing demand for plant biomass, thus creating a great interest in the development of methods to enhance the growth and biomass accumulation of crop species. In this study, we used zinc finger artificial transcription factor (ZF-ATF)-mediated genome interrogation to manipulate the growth characteristics and biomass of Arabidopsis plants. We describe the construction of two collections of Arabidopsis lines expressing fusions of three zinc fingers (3F) to the transcriptional repressor motif EAR (3F-EAR) or the transcriptional activator VP16 (3F-VP16), and the characterization of their growth characteristics. In total, six different 3F-ATF lines with a consistent increase in rosette surface area (RSA) of up to 55% were isolated. For two lines we demonstrated that 3F-ATF constructs function as dominant in trans acting causative agents for an increase in RSA and biomass, and for five larger plant lines we have investigated 3F-ATF induced transcriptomic changes. Our results indicate that genome interrogation can be used as a powerful tool for the manipulation of plant growth and biomass and that it might supply novel cues for the discovery of genes and pathways involved in these properties.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Genome, Plant/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/physiology , Transcription Factors/genetics , Zinc Fingers/genetics
15.
Sci Rep ; 7(1): 7213, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28775309

ABSTRACT

We have sequenced the genome of the endangered European eel using the MinION by Oxford Nanopore, and assembled these data using a novel algorithm specifically designed for large eukaryotic genomes. For this 860 Mbp genome, the entire computational process takes two days on a single CPU. The resulting genome assembly significantly improves on a previous draft based on short reads only, both in terms of contiguity (N50 1.2 Mbp) and structural quality. This combination of affordable nanopore sequencing and light weight assembly promises to make high-quality genomic resources accessible for many non-model plants and animals.


Subject(s)
Eels/genetics , Genome , Genomics , High-Throughput Nucleotide Sequencing , Animals , Computational Biology/methods , Genome Size , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Nanopores , Sequence Analysis, DNA
16.
F1000Res ; 6: 618, 2017.
Article in English | MEDLINE | ID: mdl-30135709

ABSTRACT

Background: The introduction of the MinION TM sequencing device by Oxford Nanopore Technologies may greatly accelerate whole genome sequencing. It has been shown that the nanopore sequence data, in combination with other sequencing technologies, is highly useful for accurate annotation of all genes in the genome. However, it also offers great potential for de novo assembly of complex genomes without using other technologies. In this manuscript we used nanopore sequencing as a tool to classify yeast strains. Methods: We compared various technical and software developments for the nanopore sequencing protocol, showing that the R9 chemistry is, as predicted, higher in quality than R7.3 chemistry. The R9 chemistry is an essential improvement for assembly of the extremely AT-rich mitochondrial genome. Results: In this study, we used this new technology to sequence and de novo assemble the genome of a recently isolated ethanologenic yeast strain, and compared the results with those obtained by classical Illumina short read sequencing. This strain was originally named Candida vartiovaarae ( Torulopsis vartiovaarae) based on ribosomal RNA sequencing. We show that the assembly using nanopore data is much more contiguous than the assembly using short read data. Conclusions: The mitochondrial and chromosomal genome sequences showed that our strain is clearly distinct from other yeast taxons and most closely related to published Cyberlindnera species. In conclusion, MinION-mediated long read sequencing can be used for high quality de novo assembly of new eukaryotic microbial genomes.

17.
Nucleic Acids Res ; 32(17): 4962-8, 2004.
Article in English | MEDLINE | ID: mdl-15388798

ABSTRACT

DNA computing aims at using nucleic acids for computing. Since micromolar DNA solutions can act as billions of parallel nanoprocessors, DNA computers can in theory solve optimization problems that require vast search spaces. However, the actual parallelism currently being achieved is at least a hundred million-fold lower than the number of DNA molecules used. This is due to the quantity of DNA molecules of one species that is required to produce a detectable output to the computations. In order to miniaturize the computation and considerably reduce the amount of DNA needed, we have combined DNA computing with single-molecule detection. Reliable hybridization detection was achieved at the level of single DNA molecules with fluorescence cross-correlation spectroscopy. To illustrate the use of this approach, we implemented a DNA-based computation and solved a 4-variable 4-clause instance of the computationally hard Satisfiability (SAT) problem.


Subject(s)
Computational Biology , Computers, Molecular , DNA/analysis , Nucleic Acid Hybridization/methods , Algorithms , DNA/chemistry , Spectrometry, Fluorescence
18.
Toxins (Basel) ; 8(12)2016 12 01.
Article in English | MEDLINE | ID: mdl-27916957

ABSTRACT

Snake genome sequencing is in its infancy-very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.


Subject(s)
Genome , Snakes/genetics , Animals , Repetitive Sequences, Nucleic Acid , Toxins, Biological/genetics
19.
Genome Announc ; 2(2)2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24675863

ABSTRACT

We have sequenced the complete genome of the plant pathogen Agrobacterium tumefaciens strain LBA4213, a derivative of the wild-type strain A. tumefaciens Ach5 and the ancestor of A. tumefaciens strain LBA4404 used in genetic engineering. The genome consists of a circular chromosome and a linear chromosome, as well as a megaplasmid and a tumor-inducing plasmid.

20.
BMC Res Notes ; 6: 428, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24156766

ABSTRACT

BACKGROUND: Sensitivity and throughput of transcriptomic and proteomic technologies have advanced tremendously in recent years. With the use of deep sequencing of RNA samples (RNA-seq) and mass spectrometry technology for protein identification and quantitation, it is now feasible to compare gene and protein expression on a massive scale and for any organism for which genomic data is available. Although these technologies are currently applied to many research questions in various model systems ranging from cell cultures to the entire organism level, there are few comparative studies of these technologies in the same system, let alone on the same samples. Here we present a comparison between gene and protein expression in embryos of zebrafish, which is an upcoming model in disease studies. RESULTS: We compared Agilent custom made expression microarrays with Illumina deep sequencing for RNA analysis, showing as expected a high degree of correlation of expression of a common set of 18,230 genes. Gene expression was also found to correlate with the abundance of 963 distinct proteins, with several categories of genes as exceptions. These exceptions include ribosomal proteins, histones and vitellogenins, for which biological and technical explanations are discussed. CONCLUSIONS: By comparing state of the art transcriptomic and proteomic technologies on samples derived from the same group of organisms we have for the first time benchmarked the differences in these technologies with regard to sensitivity and bias towards detection of particular gene categories in zebrafish. Our datasets submitted to public repositories are a good starting point for researchers interested in disease progression in zebrafish at a stage of development highly suited for high throughput screening technologies.


Subject(s)
High-Throughput Nucleotide Sequencing/standards , Oligonucleotide Array Sequence Analysis/standards , Proteome , Transcriptome , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Benchmarking , Embryo, Nonmammalian , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Histones/genetics , Proteomics/instrumentation , Proteomics/methods , Ribosomal Proteins/genetics , Vitellogenins/genetics , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL