Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Proc Natl Acad Sci U S A ; 120(4): e2214175120, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36649419

ABSTRACT

Copper is distinctive in electrocatalyzing reduction of CO2 into various energy-dense forms, but it often suffers from limited product selectivity including ethanol in competition with ethylene. Here, we describe systematically designed, bimetallic electrocatalysts based on copper/gold heterojunctions with a faradaic efficiency toward ethanol of 60% at currents in excess of 500 mA cm-2. In the modified catalyst, the ratio of ethanol to ethylene is enhanced by a factor of 200 compared to copper catalysts. Analysis by ATR-IR measurements under operating conditions, and by computational simulations, suggests that reduction of CO2 at the copper/gold heterojunction is dominated by generation of the intermediate OCCOH*. The latter is a key contributor in the overall, asymmetrical electrohydrogenation of CO2 giving ethanol rather than ethylene.

2.
Chemistry ; 30(7): e202302931, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37986265

ABSTRACT

Hierarchical zeolites can offer substantial benefits over bulk zeolites in catalysis. A drawback towards practical implementation is their lengthy synthesis, often requiring complex organic templates. This work describes an accelerated synthesis of nanolayered MWW zeolite based on the combination of interzeolite transformation (IZT) with a dual-templating strategy. FAU zeolite, hexamethyleneimine (HMI), and cetyltrimethylammonium bromide (CTAB) were respectively employed as Al source and primary zeolite, structure directing agent, and exfoliating agent. This approach allowed to reduce the synthesis of nanolayered MWW to 48 h, which is a considerable advance over the state of the art. Tracking structural, textural, morphological, and chemical properties during crystallization showed that 4-membered-ring (4MR) units derived from the FAU precursor are involved in the faster formation of MWW in comparison to a synthesis procedure from amorphous precursor. CTAB restricts the growth of the zeolite in the c-direction, resulting in nanolayered MWW. Moreover, we show that this approach can speed up the synthesis of nanolayered FER. The merits of nanolayered MWW zeolites are demonstrated in terms of improved catalytic performance in the Diels-Alder cycloaddition of 2,5-dimethylfuran and ethylene to p-xylene compared to bulk reference MWW sample.

3.
J Am Chem Soc ; 145(37): 20289-20301, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37677099

ABSTRACT

Despite the large number of studies on the catalytic hydrogenation of CO2 to CO and hydrocarbons by metal nanoparticles, the nature of the active sites and the reaction mechanism have remained unresolved. This hampers the development of effective catalysts relevant to energy storage. By investigating the structure sensitivity of CO2 hydrogenation on a set of silica-supported Ni nanoparticle catalysts (2-12 nm), we found that the active sites responsible for the conversion of CO2 to CO are different from those for the subsequent hydrogenation of CO to CH4. While the former reaction step is weakly dependent on the nanoparticle size, the latter is strongly structure sensitive with particles below 5 nm losing their methanation activity. Operando X-ray diffraction and X-ray absorption spectroscopy results showed that significant oxidation or restructuring, which could be responsible for the observed differences in CO2 hydrogenation rates, was absent. Instead, the decreased methanation activity and the related higher CO selectivity on small nanoparticles was linked to a lower availability of step edges that are active for CO dissociation. Operando infrared spectroscopy coupled with (isotopic) transient experiments revealed the dynamics of surface species on the Ni surface during CO2 hydrogenation and demonstrated that direct dissociation of CO2 to CO is followed by the conversion of strongly bonded carbonyls to CH4. These findings provide essential insights into the much debated structure sensitivity of CO2 hydrogenation reactions and are key for the knowledge-driven design of highly active and selective catalysts.

4.
Angew Chem Int Ed Engl ; 62(5): e202214864, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36464648

ABSTRACT

The direct catalytic conversion of atmospheric CO2 to valuable chemicals is a promising solution to avert negative consequences of rising CO2 concentration. However, heterogeneous catalysts efficient at low partial pressures of CO2 still need to be developed. Here, we explore Co/CeO2 as a catalyst for the methanation of diluted CO2 streams. This material displays an excellent performance at reaction temperatures as low as 175 °C and CO2 partial pressures as low as 0.4 mbar (the atmospheric CO2 concentration). To gain mechanistic understanding of this unusual activity, we employed in situ X-ray photoelectron spectroscopy and operando infrared spectroscopy. The higher surface concentration and reactivity of formates and carbonyls-key reaction intermediates-explain the superior activity of Co/CeO2 as compared to a conventional Co/SiO2 catalyst. This work emphasizes the catalytic role of the cobalt-ceria interface and will aid in developing more efficient CO2 hydrogenation catalysts.

5.
Angew Chem Int Ed Engl ; 62(40): e202305964, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37277990

ABSTRACT

The pursuit of high metal utilization in heterogeneous catalysis has triggered the burgeoning interest of various atomically dispersed catalysts. Our aim in this review is to assess key recent findings in the synthesis, characterization, structure-property relationship and computational studies of dual-atom catalysts (DACs), which cover the full spectrum of applications in thermocatalysis, electrocatalysis and photocatalysis. In particular, combination of qualitative and quantitative characterization with cooperation with DFT insights, synergies and superiorities of DACs compare to counterparts, high-throughput catalyst exploration and screening with machine-learning algorithms are highlighted. Undoubtably, it would be wise to expect more fascinating developments in the field of DACs as tunable catalysts.

6.
Angew Chem Int Ed Engl ; 62(32): e202306196, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37395384

ABSTRACT

Non-oxidative coupling of methane is a promising route to obtain ethylene directly from natural gas. We synthesized siliceous [Fe]zeolites with MFI and CHA topologies and found that they display high selectivity (>90 % for MFI and >99 % for CHA) to ethylene and ethane among gas-phase products. Deactivated [Fe]zeolites can be regenerated by burning coke in air. In situ X-ray absorption spectroscopy demonstrates that the isolated Fe3+ centers in zeolite framework of fresh catalysts are reduced during the reaction to the active sites, including Fe2+ species and Fe (oxy)carbides dispersed in zeolite pores. Photoelectron photoion coincidence spectroscopy results show that methyl radicals are the reaction intermediates formed upon methane activation. Ethane is formed by methyl radical coupling, followed by its dehydrogenation to ethylene. Based on the observation of intermediates including allene, vinylacetylene, 1,3-butadiene, 2-butyne, and cyclopentadiene over [Fe]MFI, a reaction network is proposed leading to polyaromatic species. Such reaction intermediates are not observed over the small-pore [Fe]CHA, where ethylene and ethane are the only gas-phase products.

7.
Chemistry ; 28(5): e202103894, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34822193

ABSTRACT

Methane dehydroaromatization is a promising reaction for the direct conversion of methane to liquid hydrocarbons. The active sites and the mechanism of this reaction remain controversial. This work is focused on the operando X-ray absorption near edge structure spectroscopy analysis of conventional Mo/ZSM-5 catalysts during their whole lifetime. Complemented by other characterization techniques, we derived spectroscopic descriptors of molybdenum precursor decomposition and its exchange with zeolite Brønsted acid sites. We found that the reduction of Mo-species proceeds in two steps and the active sites are of similar nature, regardless of the Mo content. Furthermore, the ZSM-5 unit cell contracts at the beginning of the reaction, which coincides with benzene formation and it is likely related to the formation of hydrocarbon pool intermediates. Finally, although reductive regeneration of used catalysts via methanation is less effective as compared to combustion of coke, it does not affect the structure of the catalysts.

8.
Angew Chem Int Ed Engl ; 61(23): e202200434, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35303388

ABSTRACT

Aiming at knowledge-driven design of novel metal-ceria catalysts for automotive exhaust abatement, current efforts mostly pertain to the synthesis and understanding of well-defined systems. In contrast, technical catalysts are often heterogeneous in their metal speciation. Here, we unveiled rich structural dynamics of a conventional impregnated Pd/CeO2 catalyst during CO oxidation. In situ X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy revealed the presence of metallic and oxidic Pd states during the reaction. Using transient operando infrared spectroscopy, we probed the nature and reactivity of the surface intermediates involved in CO oxidation. We found that while low-temperature activity is associated with sub-oxidized and interfacial Pd sites, the reaction at elevated temperatures involves metallic Pd. These results highlight the utility of the multi-technique operando approach for establishing structure-activity relationships of technical catalysts.

9.
Small ; 17(49): e2104649, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34677910

ABSTRACT

The ion intercalation behavior in 2D materials is widely applied in energy storage, electrocatalysis, and desalination. However, the detailed effect of ions on the performance, combining the influence of interlayer force and the change of solvent shell, is far less well understood. Here the solvated alkali metal ions with different sizes are intercalated into the lattice of 2D materials with different spacings (Ti3 C2 Tx , δ-MnO2 , and reduced graphene oxide) to construct the intercalation model related with sub-nanometer confined ions and solvent molecules to further understand the intercalation capacitance. Based on electrochemical methods and density functional theory calculation, the ions lose the electrostatic shielding solvent shell or shorten the distance between the layers, resulting in a significant increase in capacitance. It is found that the intercalation capacitance arises from the diffusion of solvated ions and is controlled by quantum and electrochemical capacitance for desolvated ions. This effect of solvation structure on performance can be applied in a variety of electrochemical interface studies and provides a new research view for energy storage mechanisms.

10.
Small ; 17(18): e2007702, 2021 05.
Article in English | MEDLINE | ID: mdl-33738928

ABSTRACT

Studying model nanoparticles is one approach to better understand the structural evolution of a catalyst during reactions. These nanoparticles feature well-defined faceting, offering the possibility to extract structural information as a function of facet orientation and compare it to theoretical simulations. Using Bragg Coherent X-ray Diffraction Imaging, the uniformity of electrochemically synthesized model catalysts is studied, here high-index faceted tetrahexahedral (THH) platinum nanoparticles at ambient conditions. 3D images of an individual nanoparticle are obtained, assessing not only its shape but also the specific components of the displacement and strain fields both at the surface of the nanocrystal and inside. The study reveals structural diversity of shapes and defects, and shows that the THH platinum nanoparticles present strain build-up close to facets and edges. A facet recognition algorithm is further applied to the imaged nanoparticles and provides facet-dependent structural information for all measured nanoparticles. In the context of strain engineering for model catalysts, this study provides insight into the shape-controlled synthesis of platinum nanoparticles with high-index facets.

11.
Chemphyschem ; 21(7): 625-632, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-31981395

ABSTRACT

Synthesis methods to prepare lower transition metal catalysts and specifically Ni for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) are explored. Impregnation, colloidal deposition, and spark ablation have been investigated as suitable synthesis routes to prepare SHINERS-active Ni/Au@SiO2 catalyst/Shell-Isolated Nanoparticles (SHINs). Ni precursors are confirmed to be notoriously difficult to reduce and the temperatures required are generally harsh enough to destroy SHINs, rendering SHINERS experiments on Ni infeasible using this approach. For colloidally synthesized Ni nanoparticles deposited on Au@SiO2 SHINs, stabilizing ligands first need to be removed before application is possible in catalysis. The required procedure results in transformation of the metallic Ni core to a fully oxidized metal nanoparticle, again too challenging to reduce at temperatures still compatible with SHINs. Finally, by use of spark ablation we were able to prepare metallic Ni catalysts directly on Au@SiO2 SHINs deposited on a Si wafer. These Ni/Au@SiO2 catalyst/SHINs were subsequently successfully probed with several molecules (i. e. CO and acetylene) of interest for heterogeneous catalysis, and we show that they could be used to study the in situ hydrogenation of acetylene. We observe the interaction of acetylene with the Ni surface. This study further illustrates the true potential of SHINERS by opening the door to studying industrially relevant reactions under in situ or operando reaction conditions.

12.
Proc Natl Acad Sci U S A ; 114(5): 828-833, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096342

ABSTRACT

Fluoride, nature's smallest anion, is capable of covalently coordinating to eight silicon atoms. The setting is a simple and common motif in zeolite chemistry: the box-shaped silicate double-four-ring (D4R). Fluoride seeks its center. It is the strain of box deformation that keeps fluoride in the middle of the box, and freezes what would be a transition state in its absence. Hypervalent bonding ensues. Fluoride's compactness works to its advantage in stabilizing the cage; chloride, bromide, and iodide do not bring about stabilization due to greater steric repulsion with the box frame. The combination of strain and hypervalent bonding, and the way they work in concert to yield this unusual case of multiple hypervalence, has potential for extension to a broader range of solid-state compounds.

13.
Phys Chem Chem Phys ; 21(11): 6071-6079, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30810566

ABSTRACT

Transition metal dichalcogenides (TMDs), such as MoS2 and WS2, are promising alternative non-noble metal catalysts to drive the electrocatalytic H2 evolution reaction (HER). However, their catalytic performance is inherently limited by the small number of active sites as well as their poor electrical conductivity. Here, we grow vertically aligned 2H-WS2 on different substrates to expose their edge sites for the HER and introduce a scalable approach to tune these active sites via defect engineering. In a thermal hydrogen treatment procedure, sulfur vacancies and metallic tungsten nanoparticles are formed. The extent of desulfurization, and thus the HER activity, can be tuned via controlling the H2 annealing conditions. The obtained W/WS2-x electrocatalysts are evaluated experimentally and theoretically to arrive at a better understanding of how to modify the inherently inert 2H-WS2 for more efficient HER.

14.
Chem Soc Rev ; 47(4): 1459-1483, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29334388

ABSTRACT

Catalytic hydrogenation and dehydrogenation reactions form the core of the modern chemical industry. This vast class of reactions is found in any part of chemical synthesis starting from the milligram-scale exploratory organic chemistry to the multi-ton base chemicals production. Noble metal catalysis has long been the key driving force in enabling these transformations with carbonyl substrates and their nitrogen-containing counterparts. This review is aimed at introducing the reader to the remarkable progress made in the last three years in the development of base metal catalysts for hydrogenations and dehydrogenative transformations.

15.
Angew Chem Int Ed Engl ; 58(21): 7068-7072, 2019 May 20.
Article in English | MEDLINE | ID: mdl-30900346

ABSTRACT

Non-oxidative dehydroaromatization of methane over Mo/ZSM-5 zeolite catalysts is a promising reaction for the direct conversion of abundant natural gas into liquid aromatics. Rapid coking deactivation hinders the practical implementation of this technology. Herein, we show that catalyst productivity can be improved by nearly an order of magnitude by raising the reaction pressure to 15 bar. The beneficial effect of pressure was found for different Mo/ZSM-5 catalysts and a wide range of reaction temperatures and space velocities. High-pressure operando X-ray absorption spectroscopy demonstrated that the structure of the active Mo-phase was not affected by operation at elevated pressure. Isotope labeling experiments, supported by mass-spectrometry and 13 C nuclear magnetic resonance spectroscopy, indicated the reversible nature of coke formation. The improved performance can be attributed to faster coke hydrogenation at increased pressure, overall resulting in a lower coke selectivity and better utilization of the zeolite micropore space.

16.
J Am Chem Soc ; 140(13): 4580-4587, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29498273

ABSTRACT

Resolving the structure and composition of supported nanoparticles under reaction conditions remains a challenge in heterogeneous catalysis. Advanced configurational sampling methods at the density functional theory level are used to identify stable structures of a Pd8 cluster on ceria (CeO2) in the absence and presence of O2. A Monte Carlo method in the Gibbs ensemble predicts Pd-oxide particles to be stable on CeO2 during CO oxidation. Computed potential energy diagrams for CO oxidation reaction cycles are used as input for microkinetics simulations. Pd-oxide exhibits a much higher CO oxidation activity than metallic Pd on CeO2. This work presents for the first time a scaling relation for a CeO2-supported metal nanoparticle catalyst in CO oxidation: a higher oxidation degree of the Pd cluster weakens CO binding and facilitates the rate-determining CO oxidation step with a ceria O atom. Our approach provides a new strategy to model supported nanoparticle catalysts.

17.
Chemphyschem ; 19(4): 446-458, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29105288

ABSTRACT

The catalytic Diels-Alder cycloaddition-dehydration (DACD) reaction of furanics with ethylene is a promising route to bio-derived aromatics. The reaction can be catalyzed by alkali-metal-exchanged faujasites. Herein, the results of periodic DFT calculations based on accurate structural models of alkali-metal-exchanged zeolites are presented, revealing the fundamental roles that confinement and the nature of the exchangeable cations in zeolite micropores have in the performance of faujasite-based catalysts in the DACD reaction. Special attention is devoted to analyzing the effect of functional substituents on furanic substrates (furan, 2,5-dimethylfuran, 2,5-furandicarboxylic acid) on the catalyst behavior. It is demonstrated that the conventional reactivity theories of the Diels-Alder chemistry based on simplistic single-site Lewis acidity and substituent effects do not apply if catalytic processes in the multiple-site confined environment of zeolite nanopores are considered. The nature and cooperativity of the interactions between the multiple exchangeable cations and the substrates determine the reaction energetics of the elementary steps involved in the DACD process.

18.
Macromol Rapid Commun ; 39(7): e1700743, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29333693

ABSTRACT

Silicon wafers are decorated with photoamine generator 4,5-dimethoxy-2-nitrobenzyl 3-(triethoxysilyl)propyl carbamate. UV-irradiation in the presence of benzyl-l-glutamate N-carboxyanhydride is carried out, resulting in the release of the surface-bound primary amines, making them viable N-carboxyanhydride (NCA) polymerization initiators. Successful polypeptide grafting is confirmed by water contact angle measurements as well as by ellipsometry, revealing a poly(benzyl-l-glutamate) (PBLG) layer of ≈3 nm. X-ray photoelectron spectroscopy confirms the presence of amide groups in the grafted PBLG while time-of-flight secondary ion mass spectroscopy provides additional evidence for the presence of PBLG on the surface. Evaluation of negative control samples confirms successful UV surface grafting. The approach is thus established as a viable general method for light exposure directable polypeptide functionalization of silicon surfaces.


Subject(s)
Amino Acids/chemistry , Carbamates/chemical synthesis , Polyglutamic Acid/analogs & derivatives , Ultraviolet Rays , Mass Spectrometry , Photoelectron Spectroscopy , Polyglutamic Acid/chemical synthesis , Polyglutamic Acid/chemistry
19.
Phys Chem Chem Phys ; 20(20): 14242-14250, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29761813

ABSTRACT

III-V semiconductors such as InP are highly efficient light absorbers for photoelectrochemical (PEC) water splitting devices. Yet, their cathodic stability is limited due to photocorrosion and the measured photocurrents do not necessarily originate from H2 evolution only. We evaluated the PEC stability and activation of model p-InP(100) photocathodes upon photoelectrochemical passivation (i.e. repeated surface oxidation/reduction). The electrode was subjected to a sequence of linear potential scans with or without intermittent passivation steps (repeated passivation and continuous reduction, respectively). The evolution of H2 and PH3 gases was monitored by online electrochemical mass spectrometry (OLEMS) and the Faradaic efficiencies of these processes were determined. Repeated passivation led to an increase of the photocurrent in 0.5 M H2SO4, while continuous reduction did not affect the photocurrent of p-InP(100). Neither H2 nor PH3 formation increased to the same extent as the photocurrent during the repeated passivation treatment. Surface analysis of the spent electrodes revealed substantial roughening of the electrode surface by repeated passivation, while continuous reduction left the surface unaltered. On the other hand, photocathodic conditioning performed in 0.5 M HCl led to the expected correlation between photocurrent increase and H2 formation. Ultimately, the H2 evolution rates of the photoelectrodes in H2SO4 and HCl are comparable. The much higher photocurrent in H2SO4 is due to competing side-reactions. The results emphasize the need for a detailed evaluation of the Faradaic efficiencies of all the involved processes using a chemical-specific technique like OLEMS. Photo-OLEMS can be beneficial in the study of photoelectrochemical reactions enabling the instantaneous detection of small amounts of reaction by-products.

20.
Angew Chem Int Ed Engl ; 57(27): 8235-8239, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29761616

ABSTRACT

The utilization of 5-(hydroxymethyl)furfural (HMF) for the large-scale production of essential chemicals has been largely limited by the formation of solid humin as a byproduct, which prevents the operation of stepwise batch-type and continuous flow-type processes. The reaction of HMF with 1,3-propanediol produces an HMF acetal derivative that exhibits excellent thermal stability. Aerobic oxidation of the HMF acetal with a CeO2 -supported Au catalyst and Na2 CO3 in water gives a 90-95 % yield of furan 2,5-dicarboxylic acid, an increasingly important commodity chemical for the biorenewables industry, from concentrated solutions (10-20 wt %) without humin formation. The six-membered acetal ring suppresses thermal decomposition and self-polymerization of HMF in concentrated solutions. Kinetic studies supported by DFT calculations identify two crucial steps in the reaction mechanism, that is, the partial hydrolysis of the acetal into 5-formyl-2-furan carboxylic acid involving OH- and Lewis acid sites on CeO2 , and subsequent oxidative dehydrogenation of the in situ generated hemiacetal involving Au nanoparticles. These results represent a significant advance over the current state of the art, overcoming an inherent limitation of the oxidation of HMF to an important monomer for biopolymer production.

SELECTION OF CITATIONS
SEARCH DETAIL