ABSTRACT
AIM: High body weight is a protective factor against osteoporosis, but obesity also suppresses bone metabolism and whole-body insulin sensitivity. However, the impact of body weight and regular training on bone marrow (BM) glucose metabolism is unclear. We studied the effects of regular exercise training on bone and BM metabolism in monozygotic twin pairs discordant for body weight. METHODS: We recruited 12 monozygotic twin pairs (mean ± SD age 40.4 ± 4.5 years; body mass index 32.9 ± 7.6, mean difference between co-twins 7.6 kg/m2 ; eight female pairs). Ten pairs completed the 6-month long training intervention. We measured lumbar vertebral and femoral BM insulin-stimulated glucose uptake (GU) using 18 F-FDG positron emission tomography, lumbar spine bone mineral density and bone turnover markers. RESULTS: At baseline, heavier co-twins had higher lumbar vertebral BM GU (p < .001) and lower bone turnover markers (all p < .01) compared with leaner co-twins but there was no significant difference in femoral BM GU, or bone mineral density. Training improved whole-body insulin sensitivity, aerobic capacity (both p < .05) and femoral BM GU (p = .008). The training response in lumbar vertebral BM GU was different between the groups (time × group, p = .02), as GU tended to decrease in heavier co-twins (p = .06) while there was no change in leaner co-twins. CONCLUSIONS: In this study, regular exercise training increases femoral BM GU regardless of weight and genetics. Interestingly, lumbar vertebral BM GU is higher in participants with higher body weight, and training counteracts this effect in heavier co-twins even without reduction in weight. These data suggest that BM metabolism is altered by physical activity.
Subject(s)
Bone Marrow , Insulin Resistance , Humans , Female , Adult , Obesity , Exercise , Overweight , Bone DensityABSTRACT
Blocking of myostatin and activins effectively counteracts muscle atrophy. However, the potential interaction with physical inactivity and fasting in the regulation of muscle protein synthesis is poorly understood. We used blockade of myostatin and activins by recombinant adeno-associated virus (rAAV)-mediated follistatin (FS288) overexpression in mouse tibialis anterior muscle. To investigate the effects on muscle protein synthesis, muscles were collected 7 days after rAAV-injection in the nighttime or in the daytime representing high and low levels of activity and feeding, respectively, or after overnight fasting, refeeding, or ad libitum feeding. Muscle protein synthesis was increased by FS288 independent of the time of the day or the feeding status. However, the activation of mTORC1 signaling by FS288 was attenuated in the daytime and by overnight fasting. FS288 also increased the amount of mTOR colocalized with lysosomes, but did not alter their localization toward the sarcolemma. This study shows that FS288 gene delivery increases muscle protein synthesis largely independent of diurnal fluctuations in physical activity and food intake or feeding status, overriding the physiological signals. This is important for eg cachectic and sarcopenic patients with reduced physical activity and appetite. The FS288-induced increase in mTORC1 signaling and protein synthesis may be in part driven by increased amount of mTOR colocalized with lysosomes, but not by their localization toward sarcolemma.
Subject(s)
Fasting/physiology , Follistatin/genetics , Genetic Therapy , Muscle Proteins/biosynthesis , Muscular Atrophy/therapy , Physical Conditioning, Animal , Animals , Circadian Rhythm/physiology , Dependovirus/genetics , Energy Metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/physiology , Mice , Mice, Inbred C57BLABSTRACT
Cancer-associated cachexia reduces survival, which has been attenuated by blocking the activin receptor type 2B (ACVR2B) ligands in mice. The purpose of this study was to unravel the underlying physiology and novel cachexia biomarkers by use of the colon-26 (C26) carcinoma model of cancer cachexia. Male BALB/c mice were subcutaneously inoculated with C26 cancer cells or vehicle control. Tumor-bearing mice were treated with vehicle (C26+PBS) or soluble ACVR2B either before (C26+sACVR/b) or before and after (C26+sACVR/c) tumor formation. Skeletal muscle and serum metabolomics analysis was conducted by gas chromatography-mass spectrometry. Cancer altered various biologically functional groups representing 1) amino acids, 2) energy sources, and 3) nucleotide-related intermediates. Muscle metabolomics revealed increased content of free phenylalanine in cancer that strongly correlated with the loss of body mass within the last 2 days of the experiment. This correlation was also detected in serum. Decreased ribosomal RNA content and phosphorylation of a marker of pyrimidine synthesis revealed changes in nucleotide metabolism in cancer. Overall, the effect of the experimental C26 cancer predominated over blocking ACVR2B ligands in both muscle and serum. However, the level of methyl phosphate, which was decreased in muscle in cancer, was restored by sACVR2B-Fc treatment. In conclusion, experimental cancer affected muscle and blood metabolomes mostly independently of blocking ACVR2B ligands. Of the affected metabolites, we have identified free phenylalanine as a promising biomarker of muscle atrophy or cachexia. Finally, the decreased capacity for pyrimidine nucleotide and protein synthesis in tumor-bearing mice opens up new avenues in cachexia research.
Subject(s)
Activin Receptors, Type II/antagonists & inhibitors , Cachexia/metabolism , Colonic Neoplasms/metabolism , Metabolome/physiology , Muscle, Skeletal/metabolism , Amino Acids/metabolism , Animals , Cachexia/etiology , Cell Line, Tumor , Colonic Neoplasms/complications , Immunoglobulin Fc Fragments/pharmacology , Male , Metabolic Networks and Pathways , Metabolome/drug effects , Mice , Muscle, Skeletal/drug effects , Organophosphates/metabolism , Phenylalanine/metabolism , Protein Biosynthesis/drug effects , Protein Biosynthesis/physiology , Pyrimidine Nucleotides/metabolism , Recombinant ProteinsABSTRACT
Recent studies have shown that obesity and insulin resistance are associated with increased insulin-stimulated glucose uptake (GU) in the brain. Thus, insulin sensitivity seems to work differently in the brain compared to the peripheral tissues like skeletal muscles, but the underlying mechanisms remain unknown. Regular exercise training improves skeletal muscle and whole-body insulin sensitivity. However, the effect of exercise on glucose metabolism in the brain and internal organs is less well understood. The CROSRAT study aims to investigate the effects of exercise training on brain glucose metabolism and inflammation in a high-fat diet-induced rat model of obesity and insulin resistance. Male Sprague Dawley rats (n = 144) are divided into nine study groups that undergo different dietary and/or exercise training interventions lasting 12 to 24 weeks. Insulin-stimulated GU from various tissues and brain inflammation are investigated using [18F]FDG-PET/CT and [11C]PK11195-PET/CT, respectively. In addition, peripheral tissue, brain, and fecal samples are collected to study the underlying mechanisms. The strength of this study design is that it allows examining the effects of both diet and exercise training on obesity-induced insulin resistance and inflammation. As the pathophysiological changes are studied simultaneously in many tissues and organs at several time points, the study provides insight into when and where these pathophysiological changes occur.
ABSTRACT
Objectives: Obesity impairs bone marrow (BM) glucose metabolism. Adult BM constitutes mostly of adipocytes that respond to changes in energy metabolism by modulating their morphology and number. Here we evaluated whether diet or exercise intervention could improve the high-fat diet (HFD) associated impairment in BM glucose uptake (BMGU) and whether this associates with the morphology of BM adipocytes (BMAds) in rats. Methods: Eight-week-old male Sprague-Dawley rats were fed ad libitum either HFD or chow diet for 24 weeks. Additionally after 12 weeks, HFD-fed rats switched either to chow diet, voluntary intermittent running exercise, or both for another 12 weeks. BMAd morphology was assessed by perilipin-1 immunofluorescence staining in formalin-fixed paraffin-embedded tibial sections. Insulin-stimulated sternal and humeral BMGU were measured using [18F]FDG-PET/CT. Tibial microarchitecture and mineral density were measured with microCT. Results: HFD rats had significantly higher whole-body fat percentage compared to the chow group (17% vs 13%, respectively; p = 0.004) and larger median size of BMAds in the proximal tibia (815 µm2 vs 592 µm2, respectively; p = 0.03) but not in the distal tibia. Switch to chow diet combined with running exercise normalized whole-body fat percentage (p < 0.001) but not the BMAd size. At 32 weeks of age, there was no significant difference in insulin-stimulated BMGU between the study groups. However, BMGU was significantly higher in sternum compared to humerus (p < 0.001) and higher in 8-week-old compared to 32-week-old rats (p < 0.001). BMAd size in proximal tibia correlated positively with whole-body fat percentage (r = 0.48, p = 0.005) and negatively with humeral BMGU (r = -0.63, p = 0.02). HFD significantly reduced trabecular number (p < 0.001) compared to the chow group. Switch to chow diet reversed this as the trabecular number was significantly higher (p = 0.008) than in the HFD group. Conclusion: In this study we showed that insulin-stimulated BMGU is age- and site-dependent. BMGU was not affected by the study interventions. HFD increased whole-body fat percentage and the size of BMAds in proximal tibia. Switching from HFD to a chow diet and running exercise improved glucose homeostasis and normalized the HFD-induced increase in body fat but not the hypertrophy of BMAds.
Subject(s)
Adiposity , Bone Marrow , Diet, High-Fat , Glucose , Obesity , Physical Conditioning, Animal , Rats, Sprague-Dawley , Animals , Male , Rats , Diet, High-Fat/adverse effects , Bone Marrow/metabolism , Glucose/metabolism , Obesity/metabolism , Adipocytes/metabolismABSTRACT
Obesity and sedentarism are associated with increased liver and pancreatic fat content (LFC and PFC, respectively) as well as impaired organ metabolism. Exercise training is known to decrease organ ectopic fat but its effects on organ metabolism are unclear. Genetic background affects susceptibility to obesity and the response to training. We studied the effects of regular exercise training on LFC, PFC, and metabolism in monozygotic twin pairs discordant for BMI. We recruited 12 BMI-discordant monozygotic twin pairs (age 40.4, SD 4.5 years; BMI 32.9, SD 7.6, 8 female pairs). Ten pairs completed six months of training intervention. We measured hepatic insulin-stimulated glucose uptake using [18F]FDG-PET and fat content using magnetic resonance spectroscopy before and after the intervention. At baseline LFC, PFC, gamma-glutamyl transferase (GT), and hepatic glucose uptake were significantly higher in the heavier twins compared to the leaner co-twins (p = 0.018, p = 0.02 and p = 0.01, respectively). Response to training in liver glucose uptake and GT differed between the twins (Time*group p = 0.04 and p = 0.004, respectively). Liver glucose uptake tended to decrease, and GT decreased only in the heavier twins (p = 0.032). In BMI-discordant twins, heavier twins showed higher LFC and PFC, which may underlie the observed increase in liver glucose uptake and GT. These alterations were mitigated by exercise. The small number of participants makes the results preliminary, and future research with a larger pool of participants is warranted.
Subject(s)
Body Mass Index , Exercise , Glucose , Lipid Metabolism , Liver , Obesity , Pancreas , Positron-Emission Tomography , Humans , Female , Liver/metabolism , Liver/diagnostic imaging , Adult , Obesity/metabolism , Obesity/genetics , Glucose/metabolism , Positron-Emission Tomography/methods , Male , Pancreas/metabolism , Pancreas/diagnostic imaging , Twins, Monozygotic , Middle AgedABSTRACT
BACKGROUND/OBJECTIVES: Obesity impairs intestinal glucose uptake (GU) (intestinal uptake of circulating glucose from blood) and alters gut microbiome. Exercise improves intestinal insulin-stimulated GU and alters microbiome. Genetics influence the risk of obesity and gut microbiome. However, the role of genetics on the effects of exercise on intestinal GU and microbiome is unclear. METHODS: Twelve monozygotic twin pairs discordant for BMI (age 40.4 ± 4.5 years, BMI heavier 36.7 ± 6.0, leaner 29.1 ± 5.7, 8 female pairs) performed a six-month-long training intervention. Small intestine and colonic insulin-stimulated GU was studied using [18F]FDG-PET and microbiota from fecal samples with 16s rRNA. RESULTS: Ten pairs completed the intervention. At baseline, heavier twins had lower small intestine and colonic GU (p < 0.05). Response to exercise differed between twins (p = 0.05), with leaner twins increasing colonic GU. Alpha and beta diversity did not differ at baseline. During the intervention, beta diversity changed significantly, most prominently at the mid-point (p < 0.01). Beta diversity changes were only significant in the leaner twins when the twin groups were analyzed separately. Exercise was associated with changes at the phylum level, mainly at the mid-point (pFDR < 0.05); at the genus level, several microbes increased, such as Lactobacillus and Sellimonas (pFDR < 0.05). In type 1 analyses, many genera changes were associated with exercise, and fewer, such as Lactobacillus, were also associated with dietary sugar consumption (p < 0.05). CONCLUSIONS: Obesity impairs insulin-stimulated intestinal GU independent of genetics. Though both twin groups exhibited some microbiota changes, most changes in insulin-stimulated colon GU and microbiota were significant in the leaner twins.
Subject(s)
Body Mass Index , Exercise , Gastrointestinal Microbiome , Twins, Monozygotic , Humans , Female , Adult , Exercise/physiology , Male , Blood Glucose/metabolism , Obesity/microbiology , Obesity/metabolism , Insulin/blood , Insulin/metabolism , Glucose/metabolism , Middle Aged , Intestine, Small/microbiology , Intestine, Small/metabolism , Feces/microbiologyABSTRACT
Clustering time activity curves of PET images have been used to separate clinically relevant areas of the brain or tumours. However, PET image segmentation in multiorgan level is much less studied due to the available total-body data being limited to animal studies. Now, the new PET scanners providing the opportunity to acquire total-body PET scans also from humans are becoming more common, which opens plenty of new clinically interesting opportunities. Therefore, organ-level segmentation of PET images has important applications, yet it lacks sufficient research. In this proof of concept study, we evaluate if the previously used segmentation approaches are suitable for segmenting dynamic human total-body PET images in organ level. Our focus is on general-purpose unsupervised methods that are independent of external data and can be used for all tracers, organisms, and health conditions. Additional anatomical image modalities, such as CT or MRI, are not used, but the segmentation is done purely based on the dynamic PET images. The tested methods are commonly used building blocks of the more sophisticated methods rather than final methods as such, and our goal is to evaluate if these basic tools are suited for the arising human total-body PET image segmentation. First, we excluded methods that were computationally too demanding for the large datasets from human total-body PET scanners. These criteria filtered out most of the commonly used approaches, leaving only two clustering methods, k-means and Gaussian mixture model (GMM), for further analyses. We combined k-means with two different preprocessing approaches, namely, principal component analysis (PCA) and independent component analysis (ICA). Then, we selected a suitable number of clusters using 10 images. Finally, we tested how well the usable approaches segment the remaining PET images in organ level, highlight the best approaches together with their limitations, and discuss how further research could tackle the observed shortcomings. In this study, we utilised 40 total-body [18F] fluorodeoxyglucose PET images of rats to mimic the coming large human PET images and a few actual human total-body images to ensure that our conclusions from the rat data generalise to the human data. Our results show that ICA combined with k-means has weaker performance than the other two computationally usable approaches and that certain organs are easier to segment than others. While GMM performed sufficiently, it was by far the slowest one among the tested approaches, making k-means combined with PCA the most promising candidate for further development. However, even with the best methods, the mean Jaccard index was slightly below 0.5 for the easiest tested organ and below 0.2 for the most challenging organ. Thus, we conclude that there is a lack of accurate and computationally light general-purpose segmentation method that can analyse dynamic total-body PET images.
ABSTRACT
BACKGROUND: Obesity and physical inactivity are major global public health concerns, both of which increase the risk of insulin resistance and type 2 diabetes. Regulation of glucose homeostasis involves cross-talk between the central nervous system, peripheral tissues, and gut microbiota, and is affected by genetics. Systemic cross-talk between brain, gut, and peripheral tissues in glucose homeostasis: effects of exercise training (CROSSYS) aims to gain new systems-level understanding of the central metabolism in human body, and how exercise training affects this cross-talk. METHODS: CROSSYS is an exercise training intervention, in which participants are monozygotic twins from pairs discordant for body mass index (BMI) and within a pair at least the other is overweight. Twins are recruited from three population-based longitudinal Finnish twin studies, including twins born in 1983-1987, 1975-1979, and 1945-1958. The participants undergo 6-month-long exercise intervention period, exercising four times a week (including endurance, strength, and high-intensity training). Before and after the exercise intervention, comprehensive measurements are performed in Turku PET Centre, Turku, Finland. The measurements include: two positron emission tomography studies (insulin-stimulated whole-body and tissue-specific glucose uptake and neuroinflammation), magnetic resonance imaging (brain morphology and function, quantification of body fat masses and organ volumes), magnetic resonance spectroscopy (quantification of fat within heart, pancreas, liver and tibialis anterior muscle), echocardiography, skeletal muscle and adipose tissue biopsies, a neuropsychological test battery as well as biosamples from blood, urine and stool. The participants also perform a maximal exercise capacity test and tests of muscular strength. DISCUSSION: This study addresses the major public health problems related to modern lifestyle, obesity, and physical inactivity. An eminent strength of this project is the possibility to study monozygotic twin pairs that share the genome at the sequence level but are discordant for BMI that is a risk factor for metabolic impairments such as insulin resistance. Thus, this exercise training intervention elucidates the effects of obesity on metabolism and whether regular exercise training is able to reverse obesity-related impairments in metabolism in the absence of the confounding effects of genetic factors. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03730610 . Prospectively registered 5 November 2018.
ABSTRACT
PURPOSE: Exercise and aging may modulate muscle protein homeostasis and autophagy, but few studies examine highly trained middle-age or older individuals. This study elucidated the effects of a new long-term training stimulus on markers of muscle autophagy and unfolded protein response (UPR) and on sprint running performance in masters sprinters. METHODS: Thirty-two male competitive sprinters (age 40-76 yr) were randomly divided into experimental (EX) and control (CTRL) groups. The EX training program was a combination of heavy and explosive strength and sprint exercises aimed at improving sprint performance. Fifteen and thirteen participants completed the 20-wk intervention period in EX and CTRL, respectively. The latter were told to continue their routine exercises. Key protein markers were analyzed by Western blotting from vastus lateralis (VL) muscle biopsies. The muscle thickness of VL was analyzed by ultrasonography and sprint performance by a 60-m running test. RESULTS: EX induced improvement in 60-m sprint performance when compared with controls (time-group, P = 0.003) without changes in VL muscle thickness. Content of lipidated microtubule-associated protein 1A/1B-light chain 3 (LC3-II) increased in EX (P = 0.022), suggesting increased autophagosome content. In addition, an autophagosome clearance marker sequestosome 1 (p62) decreased in EX (P = 0.006). Markers of UPR selectively modulated with decreases (e.g., ATF4, P = 0.003) and increases (e.g., EIF2α, P = 0.019) observed in EX. CONCLUSIONS: These findings suggest that a new intensive training stimulus that combines strength training with sprint training may increase muscle autophagosome content in a basal state without any evidence of impaired autophagosome clearance in masters sprinters. Simultaneously, the combined training may have a selective effect on the content of UPR signaling components.
Subject(s)
Aging/physiology , Autophagy , Endurance Training , Muscle Proteins/physiology , Muscle, Skeletal/physiology , Proteostasis , Resistance Training , Running/physiology , Adult , Aged , Athletic Performance/physiology , Biomarkers/metabolism , Glycolysis , Humans , Male , Middle Aged , Muscle Proteins/metabolism , Muscle, Skeletal/metabolismABSTRACT
Colorectal cancer (CRC) and cachexia are associated with the gut microbiota and microbial surface molecules. We characterized the CRC-associated microbiota and investigated whether cachexia affects the microbiota composition. Further, we examined the possible relationship between the microbial surface molecule flagellin and CRC. CRC cells (C26) were inoculated into mice. Activin receptor (ACVR) ligands were blocked, either before tumor formation or before and after, to increase muscle mass and prevent muscle loss. The effects of flagellin on C26-cells were studied in vitro. The occurrence of similar phenomena were studied in murine and human tumors. Cancer modulated the gut microbiota without consistent effects of blocking the ACVR ligands. However, continued treatment for muscle loss modified the association between microbiota and weight loss. Several abundant microbial taxa in cancer were flagellated. Exposure of C26-cells to flagellin increased IL6 and CCL2/MCP-1 mRNA and IL6 excretion. Murine C26 tumors expressed more IL6 and CCL2/MCP-1 mRNA than C26-cells, and human CRC tumors expressed more CCL2/MCP-1 than healthy colon sites. Additionally, flagellin decreased caspase-1 activity and the production of reactive oxygen species, and increased cytotoxicity in C26-cells. Conditioned media from flagellin-treated C26-cells deteriorated C2C12-myotubes and decreased their number. In conclusion, cancer increased flagellated microbes that may promote CRC survival and cachexia by inducing inflammatory proteins such as MCP-1. Cancer-associated gut microbiota could not be rescued by blocking ACVR ligands.
ABSTRACT
Muscle wasting in cancer cachexia can be alleviated by blocking activin receptor type 2 (ACVR2) ligands through changes in protein synthesis/degradation. These changes in cellular and protein metabolism may alter protein homeostasis. First, we elucidated the acute (1-2 days) and 2-week effects of blocking ACVR2 ligands by soluble activin receptor 2B (sACVR2B-Fc) on unfolded protein response (UPR), heat shock proteins (HSPs) and redox balance in a healthy mouse skeletal muscle. Second, we examined UPR, autophagy and redox balance with or without sACVR2B-Fc administration in muscle and liver of C26 tumor-bearing mice. The indicators of UPR and HSPs were not altered 1-2 days after a single sACVR2B-Fc administration in healthy muscles, but protein carbonyls increased (p < 0.05). Two weeks of sACVR2B-Fc administration increased muscle size, which was accompanied by increased UPR markers: GRP78 (p < 0.05), phosphorylated eIF2α (p < 0.01) and HSP47 (p < 0.01). Additionally, protein carbonyls and reduced form of glutathione increased (GSH) (p < 0.05). On the other hand, C26 cancer cachexia manifested decreased UPR markers (p-eIF2α, HSP47, p-JNK; p < 0.05) and antioxidant GSH (p < 0.001) in muscle, whereas the ratio of oxidized to reduced glutathione increased (GSSG/GSH; p < 0.001). Administration of sACVR2B-Fc prevented the decline in GSH and increased some of the UPR indicators in tumor-bearing mice. Additionally, autophagy markers LC3II/I (p < 0.05), Beclin-1 (p < 0.01), and P62 (p < 0.05) increased in the skeletal muscle of tumor-bearing mice. Finally, indicators of UPR, PERK, p-eIF2α and GRP78, increased (p < 0.05), whereas ATF4 was strongly decreased (p < 0.01) in the liver of tumor-bearing mice while sACVR2B-Fc had no effect. Muscle GSH and many of the altered UPR indicators correlated with tumor mass, fat mass and body mass loss. In conclusion, experimental cancer cachexia is accompanied by distinct and tissue-specific changes in proteostasis. Muscle hypertrophy induced by blocking ACVR2B ligands may be accompanied by the induction of UPR and increased protein carbonyls but blocking ACVR2B ligands may upregulate antioxidant protection.
ABSTRACT
BACKGROUND: Cancer cachexia increases morbidity and mortality, and blocking of activin receptor ligands has improved survival in experimental cancer. However, the underlying mechanisms have not yet been fully uncovered. METHODS: The effects of blocking activin receptor type 2 (ACVR2) ligands on both muscle and non-muscle tissues were investigated in a preclinical model of cancer cachexia using a recombinant soluble ACVR2B (sACVR2B-Fc). Treatment with sACVR2B-Fc was applied either only before the tumour formation or with continued treatment both before and after tumour formation. The potential roles of muscle and non-muscle tissues in cancer cachexia were investigated in order to understand the possible mechanisms of improved survival mediated by ACVR2 ligand blocking. RESULTS: Blocking of ACVR2 ligands improved survival in tumour-bearing mice only when the mice were treated both before and after the tumour formation. This occurred without effects on tumour growth, production of pro-inflammatory cytokines or the level of physical activity. ACVR2 ligand blocking was associated with increased muscle (limb and diaphragm) mass and attenuation of both hepatic protein synthesis and splenomegaly. Especially, the effects on the liver and the spleen were observed independent of the treatment protocol. The prevention of splenomegaly by sACVR2B-Fc was not explained by decreased markers of myeloid-derived suppressor cells. Decreased tibialis anterior, diaphragm, and heart protein synthesis were observed in cachectic mice. This was associated with decreased mechanistic target of rapamycin (mTOR) colocalization with late-endosomes/lysosomes, which correlated with cachexia and reduced muscle protein synthesis. CONCLUSIONS: The prolonged survival with continued ACVR2 ligand blocking could potentially be attributed in part to the maintenance of limb and respiratory muscle mass, but many observed non-muscle effects suggest that the effect may be more complex than previously thought. Our novel finding showing decreased mTOR localization in skeletal muscle with lysosomes/late-endosomes in cancer opens up new research questions and possible treatment options for cachexia.
Subject(s)
Activin Receptors, Type II/pharmacology , Cachexia/metabolism , Liver/drug effects , Recombinant Proteins/pharmacology , Spleen/drug effects , TOR Serine-Threonine Kinases/metabolism , Activin Receptors, Type II/therapeutic use , Animals , Biomarkers , Cachexia/drug therapy , Cachexia/etiology , Cachexia/pathology , Cell Line, Tumor , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation Mediators , Kaplan-Meier Estimate , Liver/metabolism , Male , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/mortality , Protein Transport/drug effects , Recombinant Proteins/therapeutic use , Spleen/immunology , Spleen/metabolism , Xenograft Model Antitumor AssaysABSTRACT
Protein homeostasis in cells, proteostasis, is maintained through several integrated processes and pathways and its dysregulation may mediate pathology in many diseases including Duchenne muscular dystrophy (DMD). Oxidative stress, heat shock proteins, endoplasmic reticulum (ER) stress and its response, i.e. unfolded protein response (UPR), play key roles in proteostasis but their involvement in the pathology of DMD are largely unknown. Moreover, exercise and activin receptor IIB blocking are two strategies that may be beneficial to DMD muscle, but studies to examine their effects on these proteostasis pathways are lacking. Therefore, these pathways were examined in the muscle of mdx mice, a model of DMD, under basal conditions and in response to seven weeks of voluntary exercise and/or activin receptor IIB ligand blocking using soluble activin receptor-Fc (sAcvR2B-Fc) administration. In conjunction with reduced muscle strength, mdx muscle displayed greater levels of UPR/ER-pathway indicators including greater protein levels of IRE1α, PERK and Atf6b mRNA. Downstream to IRE1α and PERK, spliced Xbp1 mRNA and phosphorylation of eIF2α, were also increased. Most of the cytoplasmic and ER chaperones and mitochondrial UPR markers were unchanged in mdx muscle. Oxidized glutathione was greater in mdx and was associated with increases in lysine acetylated proteome and phosphorylated sirtuin 1. Exercise increased oxidative stress when performed independently or combined with sAcvR2B-Fc administration. Although neither exercise nor sAcvR2B-Fc administration imparted a clear effect on ER stress/UPR pathways or heat shock proteins, sAcvR2B-Fc administration increased protein expression levels of GRP78/BiP, a triggering factor for ER stress/UPR activation and TxNIP, a redox-regulator of ER stress-induced inflammation. In conclusion, the ER stress and UPR are increased in mdx muscle. However, these processes are not distinctly improved by voluntary exercise or blocking activin receptor IIB ligands and thus do not appear to be optimal therapeutic choices for improving proteostasis in DMD.