Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
ACS Catal ; 13(17): 11771-11780, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37671181

ABSTRACT

Despite the increasing use of biocatalysis for organic synthesis, there are currently no databases that adequately capture synthetic biotransformations. The lack of a biocatalysis database prevents accelerating biocatalyst characterization efforts from being leveraged to quickly identify candidate enzymes for reactions or cascades, slowing their development. The RetroBioCat Database (available at retrobiocat.com) addresses this gap by capturing information on synthetic biotransformations and providing an analysis platform that allows biocatalysis data to be searched and explored through a range of highly interactive data visualization tools. This database makes it simple to explore available enzymes, their substrate scopes, and how characterized enzymes are related to each other and the wider sequence space. Data entry is facilitated through an openly accessible curation platform, featuring automated tools to accelerate the process. The RetroBioCat Database democratizes biocatalysis knowledge and has the potential to accelerate biocatalytic reaction development, making it a valuable resource for the community.

2.
Nat Catal ; 4(2): 98-104, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33604511

ABSTRACT

As the enzyme toolbox for biocatalysis has expanded, so has the potential for the construction of powerful enzymatic cascades for efficient and selective synthesis of target molecules. Additionally, recent advances in computer-aided synthesis planning are revolutionising synthesis design in both synthetic biology and organic chemistry. However, the potential for biocatalysis is not well captured by tools currently available in either field. Here we present RetroBioCat, an intuitive and accessible tool for computer-aided design of biocatalytic cascades, freely available at retrobiocat.com. Our approach uses a set of expertly encoded reaction rules encompassing the enzyme toolbox for biocatalysis, and a system for identifying literature precedent for enzymes with the correct substrate specificity where this is available. Applying these rules for automated biocatalytic retrosynthesis, we show our tool to be capable of identifying promising biocatalytic pathways to target molecules, validated using a test-set of recent cascades described in the literature.

3.
Chem Commun (Camb) ; 56(57): 7949-7952, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32531011

ABSTRACT

Multi-enzyme cascades utilising variants of galactose oxidase and imine reductase led to the successful conversion of N-Cbz-protected l-ornithinol and l-lysinol to l-3-N-Cbz-aminopiperidine and l-3-N-Cbz-aminoazepane respectively, in up to 54% isolated yield. Streamlining the reactions into one-pot prevented potential racemisation of key labile intermediates and led to products with high enantiopurity.


Subject(s)
Azepines/metabolism , Galactose Oxidase/metabolism , Imines/metabolism , Oxidoreductases/metabolism , Piperidines/metabolism , Azepines/chemistry , Molecular Structure , Piperidines/chemistry
4.
Science ; 364(6440): 529, 2019 05 10.
Article in English | MEDLINE | ID: mdl-31073053
SELECTION OF CITATIONS
SEARCH DETAIL