Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 185(25): 4811-4825.e17, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36423629

ABSTRACT

Pediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza-virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal immunoglobulin A (IgA) and IgG responses. High levels of S-specific antibodies were also induced in serum, which efficiently neutralized SARS-CoV-2 variants of concern of alpha, beta, and delta lineages, while their ability to neutralize Omicron sub-lineages was lower. Furthermore, B/HPIV3/S-6P induced robust systemic and pulmonary S-specific CD4+ and CD8+ T cell responses, including tissue-resident memory cells in the lungs. Following challenge, SARS-CoV-2 replication was undetectable in airways and lung tissues of immunized macaques. B/HPIV3/S-6P will be evaluated clinically as pediatric intranasal SARS-CoV-2/parainfluenza virus type 3 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Antibodies, Neutralizing , Antibodies, Viral , Macaca mulatta , COVID-19/prevention & control , SARS-CoV-2/genetics
2.
J Infect Dis ; 228(Suppl 7): S635-S647, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37652048

ABSTRACT

BACKGROUND: Existing models of Ebola virus infection have not fully characterized the pathophysiology of shock in connection with daily virologic, clinical, and immunologic parameters. We implemented a nonhuman primate critical care model to investigate these associations. METHODS: Two rhesus macaques received a target dose of 1000 plaque-forming units of Ebola virus intramuscularly with supportive care initiated on day 3. High-dimensional spectral cytometry was used to phenotype neutrophils and peripheral blood mononuclear cells daily. RESULTS: We observed progressive vasodilatory shock with preserved cardiac function following viremia onset on day 5. Multiorgan dysfunction began on day 6 coincident with the nadir of circulating neutrophils. Consumptive coagulopathy and anemia occurred on days 7 to 8 along with irreversible shock, followed by death. The monocyte repertoire began shifting on day 4 with a decline in classical and expansion of double-negative monocytes. A selective loss of CXCR3-positive B and T cells, expansion of naive B cells, and activation of natural killer cells followed viremia onset. CONCLUSIONS: Our model allows for high-fidelity characterization of the pathophysiology of acute Ebola virus infection with host innate and adaptive immune responses, which may advance host-targeted therapy design and evaluation for use after the onset of multiorgan failure.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Humans , Macaca mulatta , Leukocytes, Mononuclear , Viremia , Critical Care
3.
J Virol ; 95(2)2020 12 22.
Article in English | MEDLINE | ID: mdl-33115876

ABSTRACT

Live-attenuated pediatric vaccines for intranasal administration are being developed for human respiratory syncytial virus (RSV), an important worldwide pediatric respiratory pathogen that lacks a licensed vaccine or suitable antiviral drug. We evaluated a prime-boost strategy in which primary immunization with RSV was boosted by secondary immunization with RSV or with a chimeric recombinant bovine/human parainfluenza virus type 3 (rB/HPIV3) vector expressing the RSV fusion F protein. The vector-expressed F protein had been engineered (DS-Cav1 mutations) for increased stability in the highly immunogenic prefusion (pre-F) conformation, with or without replacement of its transmembrane and cytoplasmic tail domains with their counterparts from bovine parainfluenza virus type 3 (BPIV3) F protein to direct incorporation into the vector virion for increased immunogenicity. In hamsters that received a primary infection with RSV, a booster infection with RSV ∼6 weeks later was completely restricted for producing infectious virus but induced a significant increase in the serum RSV-plaque-reduction neutralizing antibody titer (RSV-PRNT). Boosting instead with the rB/HPIV3-RSV-pre-F vectors resulted in efficient replication and induced significantly higher RSV-PRNTs than RSV. In African green monkeys that received a primary infection with RSV, a booster infection with RSV ∼2, ∼6, or ∼15 months later was highly restricted, whereas booster infections with the vectors had robust replication. Compared with RSV, boosts with the vectors induced 7- to 15-fold higher titers of RSV-specific serum antibodies with high neutralizing activity, as well as significantly higher titers of RSV-specific mucosal IgA antibodies. These findings support further development of this heterologous prime-boost strategy.IMPORTANCE Immune responses to RSV in infants can be reduced due to immunological immaturity and immunosuppression by RSV-specific maternal antibodies. In infants and young children, two infections with wild-type RSV typically are needed to achieve the titers of RSV-specific serum antibodies and protection against illness that are observed in adults. Therefore, a boost might substantially improve the performance of live pediatric RSV vaccines presently being developed. Hamsters and African green monkeys received a primary intranasal infection with RSV and were given a boost with RSV or a parainfluenza virus (PIV) vector expressing RSV fusion protein engineered for enhanced immunogenicity. The RSV boost was highly restricted but induced a significant increase in serum RSV-neutralizing antibodies. The PIV vectors replicated efficiently and induced significantly higher antibody responses. The use of an attenuated PIV vector expressing RSV antigen to boost a primary immunization with an attenuated RSV warrants further evaluation.


Subject(s)
Immunization, Secondary/methods , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Respirovirus/genetics , Viral Fusion Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Chlorocebus aethiops , Cricetinae , Immunogenicity, Vaccine , Mutation , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/genetics , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Fusion Proteins/genetics
4.
J Virol ; 92(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29925656

ABSTRACT

Human respiratory syncytial virus (RSV) continues to be the leading viral cause of severe acute lower respiratory tract disease in infants and children worldwide. A licensed vaccine or antiviral drug suitable for routine use remains unavailable. Like RSV, Murine pneumonia virus (MPV) is a member of the genus Orthopneumovirus, family Pneumoviridae Humans are not normally exposed to MPV, and MPV is not cross-protective with RSV. We evaluated MPV as an RSV vaccine vector expressing the RSV fusion (F) glycoprotein. The RSV F open reading frame (ORF) was codon optimized, and the encoded RSV F protein was made identical to an early passage of RSV strain A2. The RSV F ORF was placed under the control of MPV transcription signals and inserted at the first (rMPV-F1), third (rMPV-F3), or fourth (rMPV-F4) gene position of a version of the MPV genome that contained a codon-pair-optimized polymerase (L) gene. The recovered viruses replicated in vitro as efficiently as the empty vector, with stable expression of RSV F protein. Replication and immunogenicity of rMPV-F1 and rMPV-F3 were evaluated in rhesus macaques following intranasal and intratracheal administration. Both viruses replicated at low levels in the upper and lower respiratory tracts, maintained stable RSV F expression, and induced RSV-neutralizing serum antibodies at high levels similar to those induced by wild-type RSV replicating to a 5- to 25-fold-higher titer. In conclusion, this study demonstrated that rMPV provides a highly attenuated yet immunogenic vector for the expression of RSV F protein, with potential application in RSV-naive and RSV-experienced populations.IMPORTANCE Human respiratory syncytial virus (RSV) is an important human pathogen that lacks a licensed vaccine or antiviral drug suitable for routine use. We describe here the evaluation of recombinant murine pneumonia virus (rMPV) as a live-attenuated vector that expresses the RSV F protein, the major RSV neutralization antigen, as an experimental RSV vaccine. The rMPV-RSV-F vectors expressing RSV F from the first, third, or fourth gene position were genetically stable and were not restricted for replication in vitro In contrast, the vectors exhibited highly attenuated replication in the respiratory tract of rhesus macaques, maintained stable RSV F expression, and induced RSV-neutralizing serum antibodies at high titers similar to those conferred by wild-type RSV. Given the lack of preexisting immunity to MPV in humans and the lack of cross-neutralization and cross-protection between MPV and RSV, an rMPV-vectored RSV vaccine should be immunogenic in both RSV-naive children and RSV-experienced adults.


Subject(s)
Murine pneumonia virus/genetics , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/genetics , Viral Fusion Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Chlorocebus aethiops , Genetic Vectors , Humans , Macaca mulatta , Mice , Murine pneumonia virus/immunology , Murine pneumonia virus/metabolism , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Vero Cells , Viral Fusion Proteins/genetics , Virus Replication
5.
J Virol ; 91(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28250127

ABSTRACT

The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (CΔ170). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation.IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect against mucosal as well as systemic inoculation are needed. We evaluated a version of human parainfluenza virus type 1 (HPIV1) bearing a stabilized attenuating mutation in the P/C gene (CΔ170) as an intranasal vaccine vector to express the EBOV glycoprotein GP. We evaluated expression from two different genome positions (pre-N and N-P) and investigated the use of vector packaging signals. African green monkeys immunized with two doses of the vector expressing GP from the pre-N position developed high titers of GP neutralizing serum antibodies. The attenuated vaccine candidate is expected to be safe and immunogenic and is available for clinical development.


Subject(s)
Ebola Vaccines/genetics , Ebola Vaccines/immunology , Ebolavirus/chemistry , Hemorrhagic Fever, Ebola/prevention & control , Parainfluenza Virus 1, Human/genetics , Viral Envelope Proteins/genetics , Administration, Intranasal , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Chlorocebus aethiops , Ebola Vaccines/administration & dosage , Ebolavirus/genetics , Ebolavirus/immunology , Genetic Vectors , Glycoproteins/genetics , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/immunology , Humans , Respiratory System/virology , Vaccination , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Virus Replication
6.
J Virol ; 91(15)2017 08 01.
Article in English | MEDLINE | ID: mdl-28539444

ABSTRACT

Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory tract disease worldwide, but it lacks a licensed vaccine or suitable antiviral drug. A live attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) was developed previously as a vector expressing RSV fusion (F) protein to confer bivalent protection against RSV and HPIV3. In a previous clinical trial in virus-naive children, rB/HPIV3 was well tolerated but the immunogenicity of wild-type RSV F was unsatisfactory. We previously modified RSV F with a designed disulfide bond (DS) to increase stability in the prefusion (pre-F) conformation and to be efficiently packaged in the vector virion. Here, we further stabilized pre-F by adding both disulfide and cavity-filling mutations (DS-Cav1), and we also modified RSV F codon usage to have a lower CpG content and a higher level of expression. This RSV F open reading frame was evaluated in rB/HPIV3 in three forms: (i) pre-F without vector-packaging signal, (ii) pre-F with vector-packaging signal, and (iii) secreted pre-F ectodomain trimer. Despite being efficiently expressed, the secreted pre-F was poorly immunogenic. DS-Cav1 stabilized pre-F, with or without packaging, induced higher titers of pre-F specific antibodies in hamsters, and improved the quality of RSV-neutralizing serum antibodies. Codon-optimized RSV F containing fewer CpG dinucleotides had higher F expression, replicated more efficiently in vivo, and was more immunogenic. The combination of DS-Cav1 pre-F stabilization, optimized codon usage, reduced CpG content, and vector packaging significantly improved vector immunogenicity and protective efficacy against RSV. This provides an improved vectored RSV vaccine candidate suitable for pediatric clinical evaluation.IMPORTANCE RSV and HPIV3 are the first and second leading viral causes of severe pediatric respiratory disease worldwide. Licensed vaccines or suitable antiviral drugs are not available. We are developing a chimeric rB/HPIV3 vector expressing RSV F as a bivalent RSV/HPIV3 vaccine and have been evaluating means to increase RSV F immunogenicity. In this study, we evaluated the effects of improved stabilization of F in the pre-F conformation and of codon optimization resulting in reduced CpG content and greater pre-F expression. Reduced CpG content dampened the interferon response to infection, promoting higher replication and increased F expression. We demonstrate that improved pre-F stabilization and strategic manipulation of codon usage, together with efficient pre-F packaging into vector virions, significantly increased F immunogenicity in the bivalent RSV/HPIV3 vaccine. The improved immunogenicity included induction of increased titers of high-quality complement-independent antibodies with greater pre-F site Ø binding and greater protection against RSV challenge.


Subject(s)
Drug Carriers , Respiratory Syncytial Virus Vaccines/immunology , Respirovirus/physiology , Viral Fusion Proteins/immunology , Virion/metabolism , Virus Assembly , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Codon , Cricetinae , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/immunology , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/genetics , Respirovirus/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Virion/genetics
7.
Nature ; 489(7415): 318-21, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22932268

ABSTRACT

Calorie restriction (CR), a reduction of 10­40% in intake of a nutritious diet, is often reported as the most robust non-genetic mechanism to extend lifespan and healthspan. CR is frequently used as a tool to understand mechanisms behind ageing and age-associated diseases. In addition to and independently of increasing lifespan, CR has been reported to delay or prevent the occurrence of many chronic diseases in a variety of animals. Beneficial effects of CR on outcomes such as immune function, motor coordination and resistance to sarcopenia in rhesus monkeys have recently been reported. We report here that a CR regimen implemented in young and older age rhesus monkeys at the National Institute on Aging (NIA) has not improved survival outcomes. Our findings contrast with an ongoing study at the Wisconsin National Primate Research Center (WNPRC), which reported improved survival associated with 30% CR initiated in adult rhesus monkeys (7­14 years) and a preliminary report with a small number of CR monkeys. Over the years, both NIA and WNPRC have extensively documented beneficial health effects of CR in these two apparently parallel studies. The implications of the WNPRC findings were important as they extended CR findings beyond the laboratory rodent and to a long-lived primate. Our study suggests a separation between health effects, morbidity and mortality, and similar to what has been shown in rodents, study design, husbandry and diet composition may strongly affect the life-prolonging effect of CR in a long-lived nonhuman primate.


Subject(s)
Aging/physiology , Caloric Restriction , Health , Longevity/physiology , National Institute on Aging (U.S.) , Age of Onset , Animals , Blood Glucose/analysis , Cardiovascular Diseases/blood , Cholesterol/blood , Female , Humans , Incidence , Kaplan-Meier Estimate , Macaca mulatta , Male , Models, Animal , Monkey Diseases/blood , Neoplasms/blood , Survival Rate , Triglycerides/blood , Uncertainty , United States
8.
J Virol ; 90(21): 10022-10038, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27581977

ABSTRACT

Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced "high-quality" RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B. Liang et al., J Virol 89:9499-9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials. IMPORTANCE: Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines.


Subject(s)
Antibodies, Neutralizing/genetics , Genetic Vectors/genetics , Parainfluenza Virus 3, Bovine/genetics , Parainfluenza Virus 3, Human/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Capsid/metabolism , Cattle , Cell Line , Chlorocebus aethiops , Cricetinae , Humans , Macaca mulatta , Parainfluenza Virus 3, Bovine/immunology , Parainfluenza Virus 3, Human/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus Vaccines/immunology , Respirovirus Infections/immunology , Respirovirus Infections/virology , Vero Cells , Viral Fusion Proteins/immunology , Virus Replication/genetics
9.
J Med Primatol ; 43(3): 162-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24697511

ABSTRACT

BACKGROUND: Drugs commonly used to sedate non-human primates for physiological sample collection can affect the metabolic system and alter rates of glucose metabolism. This study was designed to compare the physiological and metabolic effects of ketamine/diazepam, telazol, and ketamine/dexmedetomidine. METHODS: Seven female rhesus monkeys underwent intravenous glucose tolerance testing under each of three anesthesia conditions. Blood glucose, insulin, physiological parameters, and sedation characteristics were measured and recorded. RESULTS: Glucose and insulin values were both significantly impacted by ketamine/dexmedetomidine sedation while remaining consistent during ketamine and telazol sedation. Heart rate was also significantly lowered during ketamine/dexmedetomidine anesthesia. Though, ketamine/dexmedetomidine resulted in a longer time between induction of anesthesia and need for a supplemental dose of anesthesia drug. CONCLUSIONS: Telazol and ketamine have minimal cardiorespiratory and metabolic effects compared to ketamine/dexmedetomidine. Although practicably interchangeable, telazol appears to be the most efficient for intravenous glucose tolerance testings with non-human primates.


Subject(s)
Anesthesia/methods , Anesthetics/pharmacology , Blood Pressure/drug effects , Heart Rate/drug effects , Macaca mulatta/metabolism , Respiratory Rate/drug effects , Animals , Dexmedetomidine/pharmacology , Diazepam/pharmacology , Dose-Response Relationship, Drug , Drug Combinations , Female , Glucose Tolerance Test , Ketamine/pharmacology , Tiletamine/pharmacology , Zolazepam/pharmacology
10.
PLoS One ; 19(4): e0301773, 2024.
Article in English | MEDLINE | ID: mdl-38593167

ABSTRACT

Respiratory syncytial virus (RSV) is the leading viral cause of bronchiolitis and pneumonia in infants and toddlers, but there currently is no licensed pediatric vaccine. A leading vaccine candidate that has been evaluated for intranasal immunization in a recently completed phase 1/2 clinical trial is an attenuated version of RSV strain A2 called RSV/ΔNS2/Δ1313/I1314L (hereafter called ΔNS2). ΔNS2 is attenuated by deletion of the interferon antagonist NS2 gene and introduction into the L polymerase protein gene of a codon deletion (Δ1313) that confers temperature-sensitivity and is stabilized by a missense mutation (I1314L). Previously, introduction of four amino acid changes derived from a second RSV strain "line 19" (I79M, K191R, T357K, N371Y) into the F protein of strain A2 increased the stability of infectivity and the proportion of F protein in the highly immunogenic pre-fusion (pre-F) conformation. In the present study, these four "line 19" assignments were introduced into the ΔNS2 candidate, creating ΔNS2-L19F-4M. During in vitro growth in Vero cells, ΔNS2-L19F-4M had growth kinetics and peak titer similar to the ΔNS2 parent. ΔNS2-L19F-4M exhibited an enhanced proportion of pre-F protein, with a ratio of pre-F/total F that was 4.5- to 5.0-fold higher than that of the ΔNS2 parent. The stability of infectivity during incubation at 4°C, 25°C, 32°C and 37°C was greater for ΔNS2-L19F-4M; for example, after 28 days at 32°C, its titer was 100-fold greater than ΔNS2. ΔNS2-L19F-4M exhibited similar levels of replication in human airway epithelial (HAE) cells as ΔNS2. The four "line 19" F mutations were genetically stable during 10 rounds of serial passage in Vero cells. In African green monkeys, ΔNS2-L19F-4M and ΔNS2 had similar growth kinetics, peak titer, and immunogenicity. These results suggest that ΔNS2-L19F-4M is an improved live attenuated vaccine candidate whose enhanced stability may simplify its manufacture, storage and distribution, which merits further evaluation in a clinical trial in humans.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Animals , Humans , Chlorocebus aethiops , Child , Respiratory Syncytial Virus Vaccines/genetics , Vero Cells , Antibodies, Viral , Viral Fusion Proteins/genetics , Respiratory Syncytial Virus, Human/genetics , Antibodies, Neutralizing , Mutation, Missense
11.
Nat Commun ; 15(1): 3553, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670948

ABSTRACT

Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. Here, we evaluate the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to male rhesus macaques. A single dose of MPV/S-2P is highly immunogenic, and a second dose increases the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increases levels of dimeric anti-S IgA in the airways. MPV/S-2P also induces S-specific CD4+ and CD8+ T-cells in the airways that differentiate into large populations of tissue-resident memory cells within a month after the boost. One dose induces substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P are fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Male , Antibodies, Viral/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors/immunology , Genetic Vectors/genetics , Antibodies, Neutralizing/immunology , Administration, Intranasal , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Immunoglobulin A/immunology , CD4-Positive T-Lymphocytes/immunology , Humans
12.
Microbiol Spectr ; 11(1): e0213922, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36475838

ABSTRACT

The bacterial component of the gastrointestinal tract microbiome is comprised of hundreds of species, the majority of which live in symbiosis with the host. The bacterial microbiome is influenced by host diet and disease history, and host genetics may additionally play a role. To understand the degree to which host genetics shapes the gastrointestinal tract microbiome, we studied fecal microbiomes in 4 species of nonhuman primates (NHPs) held in separate facilities but fed the same base diet. These animals include Chlorocebus pygerythrus, Chlorocebus sabaeus, Macaca mulatta, and Macaca nemestrina. We also followed gastrointestinal tract microbiome composition in 20 Macaca mulatta (rhesus macaques [RMs]) as they transitioned from an outdoor to indoor environment and compared 6 Chlorocebus pygerythrus monkeys that made the outdoor to indoor transition to their 9 captive-born offspring. We found that genetics can influence microbiome composition, with animals of different genera (Chlorocebus versus Macaca) having significantly different gastrointestinal (GI) microbiomes despite controlled diets. Animals within the same genera have more similar microbiomes, although still significantly different, and animals within the same species have even more similar compositions that are not significantly different. Significant differences were also not observed between wild-born and captive-born Chlorocebus pygerythrus, while there were significant changes in RMs as they transitioned into captivity. Together, these results suggest that the effects of captivity have a larger impact on the microbiome than other factors we examined within a single NHP species, although host genetics does significantly influence microbiome composition between NHP genera and species. IMPORTANCE Our data point to the degree to which host genetics can influence GI microbiome composition and suggest, within primate species, that individual host genetics is unlikely to significantly alter the microbiome. These data are important for the development of therapeutics aimed at altering the microbiome within populations of genetically disparate members of primate species.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Chlorocebus aethiops , Gastrointestinal Microbiome/genetics , Macaca mulatta , Phylogeny , Microbiota/genetics , Diet , RNA, Ribosomal, 16S/genetics
13.
mBio ; 14(2): e0022023, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36880755

ABSTRACT

Alternative delivery routes of the current Mycobacterium tuberculosis (Mtb) vaccine, intradermally (ID) delivered BCG, may provide better protection against tuberculosis, and be more easily administered. Here, we use rhesus macaques to compare the airway immunogenicity of BCG delivered via either ID or intragastric gavage vaccination. Ag-specific CD4 T cell responses in the blood were similar after BCG vaccination via gavage or ID injection. However, gavage BCG vaccination induced significantly lower T cell responses in the airways compared to intradermal BCG vaccination. Examining T cell responses in lymph node biopsies showed that ID vaccination induced T cell priming in skin-draining lymph nodes, while gavage vaccination induced priming in the gut-draining nodes, as expected. While both delivery routes induced highly functional Ag-specific CD4 T cells with a Th1* phenotype (CXCR3+CCR6+), gavage vaccination induced the co-expression of the gut-homing integrin α4ß7 on Ag-specific Th1* cells, which was associated with reduced migration into the airways. Thus, in rhesus macaques, the airway immunogenicity of gavage BCG vaccination may be limited by the imprinting of gut-homing receptors on Ag-specific T cells primed in intestinal lymph nodes. IMPORTANCE Mycobacterium tuberculosis (Mtb) is a leading cause of global infectious disease mortality. The vaccine for Mtb, Bacillus Calmette-Guérin (BCG), was originally developed as an oral vaccine, but is now given intradermally. Recently, clinical studies have reevaluated oral BCG vaccination in humans and found that it induces significant T cell responses in the airways. Here, we use rhesus macaques to compare the airway immunogenicity of BCG delivered intradermally or via intragastric gavage. We find that gavage BCG vaccination induces Mtb-specific T cell responses in the airways, but to a lesser extent than intradermal vaccination. Furthermore, gavage BCG vaccination induces the gut-homing receptor a4ß7 on Mtb-specific CD4 T cells, which was associated with reduced migration into the airways. These data raise the possibility that strategies to limit the induction of gut-homing receptors on responding T cells may enhance the airway immunogenicity of oral vaccines.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , BCG Vaccine , Macaca mulatta , Lung/microbiology , Tuberculosis/prevention & control , Th1 Cells , Mycobacterium bovis/genetics , CD4-Positive T-Lymphocytes , Vaccination
14.
iScience ; 26(12): 108490, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38144450

ABSTRACT

Next-generation SARS-CoV-2 vaccines are needed that induce systemic and mucosal immunity. Murine pneumonia virus (MPV), a murine homolog of respiratory syncytial virus, is attenuated by host-range restriction in nonhuman primates and has a tropism for the respiratory tract. We generated MPV vectors expressing the wild-type SARS-CoV-2 spike protein (MPV/S) or its prefusion-stabilized form (MPV/S-2P). Both vectors replicated similarly in cell culture and stably expressed S. However, only S-2P was associated with MPV particles. After intranasal/intratracheal immunization of rhesus macaques, MPV/S and MPV/S-2P replicated to low levels in the airways. Despite its low-level replication, MPV/S-2P induced high levels of mucosal and serum IgG and IgA to SARS-CoV-2 S or its receptor-binding domain. Serum antibodies from MPV/S-2P-immunized animals efficiently inhibited ACE2 receptor binding to S proteins of variants of concern. Based on its attenuation and immunogenicity in macaques, MPV/S-2P will be further evaluated as a live-attenuated vaccine for intranasal immunization against SARS-CoV-2.

15.
Res Sq ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37790295

ABSTRACT

Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. We evaluated the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to rhesus macaques. A single dose of MPV/S-2P was highly immunogenic, and a second dose increased the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increased levels of dimeric anti-S IgA in the airways. MPV/S-2P also induced S-specific CD4+ and CD8+ T-cells in the airways that differentiated into large populations of tissue-resident memory cells within a month after the boost. One dose induced substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P were fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.

16.
J Virol ; 85(17): 8702-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21715501

ABSTRACT

Many species of African nonhuman primates are natural hosts for individual strains of simian immunodeficiency virus (SIV). These infected animals do not, however, develop AIDS. Here we show that multiple species of African nonhuman primate species characteristically have low frequencies of CD4(+) T cells and high frequencies of both T cells that express only the alpha-chain of CD8 and double-negative T cells. These subsets of T cells are capable of eliciting functions generally associated with CD4(+) T cells, yet these cells lack surface expression of the CD4 protein and are, therefore, poor targets for SIV in vivo. These data demonstrate that coevolution with SIV has, in several cases, involved downregulation of receptors for the virus by otherwise-susceptible host target cells. Understanding the genetic factors that lead to downregulation of these receptors may lead to therapeutic interventions that mimic this modulation in progressive infections.


Subject(s)
CD4 Antigens/analysis , Primates/virology , Simian Immunodeficiency Virus/growth & development , Simian Immunodeficiency Virus/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/virology , Animals , Simian Acquired Immunodeficiency Syndrome/immunology , T-Lymphocyte Subsets/chemistry
17.
bioRxiv ; 2022 May 23.
Article in English | MEDLINE | ID: mdl-35665011

ABSTRACT

Pediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways, as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal IgA and IgG responses. High levels of S-specific antibodies were also induced in serum, which efficiently neutralized SARS-CoV-2 variants of concern. Furthermore, B/HPIV3/S-6P induced robust systemic and pulmonary S-specific CD4+ and CD8+ T-cell responses, including tissue-resident memory cells in lungs. Following challenge, SARS-CoV-2 replication was undetectable in airways and lung tissues of immunized macaques. B/HPIV3/S-6P will be evaluated clinically as pediatric intranasal SARS-CoV-2/parainfluenza virus type 3 vaccine.

18.
Biochemistry ; 50(15): 3137-48, 2011 Apr 19.
Article in English | MEDLINE | ID: mdl-21384913

ABSTRACT

Cytochalasin B (CB) and forskolin (FSK) inhibit GLUT1-mediated sugar transport in red cells by binding at or close to the GLUT1 endofacial sugar binding site. Paradoxically, very low concentrations of each of these inhibitors produce a modest stimulation of sugar transport [ Cloherty, E. K., Levine, K. B., and Carruthers, A. ((2001)) The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Biochemistry 40 ((51)) 15549-15561]. This result is consistent with the hypothesis that the glucose transporter contains multiple, interacting, endofacial binding sites for CB and FSK. The present study tests this hypothesis directly and, by screening a library of cytochalasin and forskolin analogues, asks what structural features of endofacial site ligands determine binding site affinity and cooperativity. Like CB, FSK competitively inhibits exchange 3-O-methylglucose transport (sugar uptake in cells containing intracellular sugar) but noncompetitively inhibits sugar uptake into cells lacking sugar at 4 °C. This refutes the hypothesis that FSK binds at GLUT1 endofacial and exofacial sugar binding sites. Some forskolin derivatives and cytochalasins inhibit equilibrium [(3)H]-CB binding to red cell membranes depleted of peripheral proteins at 4 °C. Others produce a moderate stimulation of [(3)H]-CB binding when introduced at low concentrations but inhibit binding as their concentration is increased. Yet other analogues modestly stimulate [(3)H]-CB binding at all inhibitor concentrations applied. These findings are explained by a carrier that presents at least two interacting endofacial binding sites for CB or FSK. We discuss this result within the context of models for GLUT1-mediated sugar transport and GLUT1 quaternary structure, and we evaluate the major determinants of ligand binding affinity and cooperativity.


Subject(s)
Glucose Transporter Type 1/chemistry , Glucose Transporter Type 1/metabolism , Protein Conformation , Binding Sites/drug effects , Binding, Competitive , Biological Transport/drug effects , Colforsin/metabolism , Colforsin/pharmacology , Cytochalasin B/metabolism , Cytochalasin B/pharmacology , Glucose Transporter Type 1/antagonists & inhibitors , Humans , Ligands , Protein Binding
19.
Nat Med ; 27(12): 2234-2245, 2021 12.
Article in English | MEDLINE | ID: mdl-34887575

ABSTRACT

The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4+ T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Genes, env , Genes, gag , HIV Antibodies/biosynthesis , HIV-1/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Animals , HIV Antibodies/immunology , Immunization, Secondary , Macaca mulatta , Risk Factors , Simian Acquired Immunodeficiency Syndrome/immunology , Vaccines, Synthetic/administration & dosage , mRNA Vaccines/administration & dosage
20.
Sci Transl Med ; 12(567)2020 10 28.
Article in English | MEDLINE | ID: mdl-33115950

ABSTRACT

There is limited information about the impact of Zika virus (ZIKV) exposure in utero on the anti-ZIKV immune responses of offspring. We infected six rhesus macaque dams with ZIKV early or late in pregnancy and studied four of their offspring over the course of a year postpartum. Despite evidence of ZIKV exposure in utero, we observed no structural brain abnormalities in the offspring. We detected infant-derived ZIKV-specific immunoglobulin A antibody responses and T cell memory responses during the first year postpartum in the two offspring born to dams infected with ZIKV early in pregnancy. Critically, although the infants had acquired some immunological memory of ZIKV, it was not sufficient to protect them against reinfection with ZIKV at 1 year postpartum. The four offspring reexposed to ZIKV at 1 year postpartum all survived but exhibited acute viremia and viral tropism to lymphoid tissues; three of four reexposed offspring exhibited spinal cord pathology. These data suggest that macaque infants born to dams infected with ZIKV during pregnancy remain susceptible to postnatal infection and consequent neuropathology.


Subject(s)
Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Animals , Female , Humans , Macaca mulatta , Postpartum Period , Pregnancy , Reinfection
SELECTION OF CITATIONS
SEARCH DETAIL