Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37467750

ABSTRACT

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Subject(s)
Charcot-Marie-Tooth Disease , Neurodevelopmental Disorders , Animals , Humans , Mice , Cell Line , Charcot-Marie-Tooth Disease/genetics , DEAD-box RNA Helicases/genetics , Dichlorodiphenyl Dichloroethylene , DNA Helicases , Mammals , Neoplasm Proteins/genetics
2.
Am J Hum Genet ; 109(9): 1713-1723, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35948005

ABSTRACT

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.


Subject(s)
Myokymia , Nerve Tissue Proteins , Animals , Autoantibodies , Axons , Genomics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mammals/genetics , Mice , Nerve Tissue Proteins/genetics , Phenotype , Reverse Genetics
3.
Brain ; 147(4): 1436-1456, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37951597

ABSTRACT

The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders.


Subject(s)
Intellectual Disability , Microcephaly , Movement Disorders , Nervous System Malformations , Neurodevelopmental Disorders , Animals , Female , Humans , Male , ATP-Binding Cassette Transporters , Intellectual Disability/genetics , Movement Disorders/genetics , Nervous System Malformations/genetics , Neurodevelopmental Disorders/genetics , Tremor , Zebrafish , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged
4.
Am J Hum Genet ; 108(10): 1981-2005, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34582790

ABSTRACT

Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.


Subject(s)
Genomics/methods , Mutation , Neurodevelopmental Disorders/epidemiology , Phenotype , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Pedigree , Prevalence , Turkey/epidemiology , Exome Sequencing , Young Adult
5.
Genet Med ; : 101273, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306721

ABSTRACT

PURPOSE: FLVCR1 encodes a solute carrier (SLC) protein implicated in heme, choline, and ethanolamine transport. While Flvcr1-/- mice exhibit skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia (DBA), biallelic FLVCR1 variants in humans have previously only been linked to childhood or adult-onset ataxia, sensory neuropathy, and retinitis pigmentosa. METHODS: We identified individuals with undiagnosed neurodevelopmental disorders and biallelic FLVCR1 variants through international data sharing and characterized the functional consequences of their FLVCR1 variants. RESULTS: We ascertained 30 patients from 23 unrelated families with biallelic FLVCR1 variants and characterized a novel FLVCR1-related phenotype: severe developmental disorders with profound developmental delay, microcephaly (Z-score -2.5 to -10.5), brain malformations, epilepsy, spasticity, and premature death. Brain malformations ranged from mild brain volume reduction to hydranencephaly. Severely affected patients share traits including macrocytic anemia and skeletal malformations with Flvcr1-/- mice and DBA. FLVCR1 variants significantly reduce choline and ethanolamine transport and/or disrupt mRNA splicing. CONCLUSION: These data demonstrate a broad FLVCR1-related phenotypic spectrum ranging from severe multiorgan developmental disorders resembling DBA to adult-onset neurodegeneration. Our study expands our understanding of Mendelian choline and ethanolamine disorders and illustrates the importance of anticipating a wide phenotypic spectrum for known disease genes and incorporating model organism data into genome analysis to maximize genetic testing yield.

6.
Brain ; 146(8): 3273-3288, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36757831

ABSTRACT

In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.


Subject(s)
Dystonia , Dystonic Disorders , Nervous System Malformations , Male , Humans , Cross-Sectional Studies , Mutation/genetics , Phenotype , Dystonia/genetics , Dystonic Disorders/genetics , Molecular Chaperones/genetics
7.
Ann Neurol ; 92(2): 304-321, 2022 08.
Article in English | MEDLINE | ID: mdl-35471564

ABSTRACT

OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.


Subject(s)
Apyrase , Intellectual Disability , Spastic Paraplegia, Hereditary , White Matter , Apyrase/genetics , Dysarthria , Humans , Intellectual Disability/genetics , Mutation/genetics , Paraplegia/genetics , Pedigree , Phenotype , Spastic Paraplegia, Hereditary/genetics , White Matter/diagnostic imaging , White Matter/pathology
8.
Clin Genet ; 101(5-6): 530-540, 2022 05.
Article in English | MEDLINE | ID: mdl-35322404

ABSTRACT

Homozygous pathogenic variants in WDR45B were first identified in six subjects from three unrelated families with global development delay, refractory seizures, spastic quadriplegia, and brain malformations. Since the initial report in 2018, no further cases have been described. In this report, we present 12 additional individuals from seven unrelated families and their clinical, radiological, and molecular findings. Six different variants in WDR45B were identified, five of which are novel. Microcephaly and global developmental delay were observed in all subjects, and seizures and spastic quadriplegia in most. Common findings on brain imaging include cerebral atrophy, ex vacuo ventricular dilatation, brainstem volume loss, and symmetric under-opercularization. El-Hattab-Alkuraya syndrome is associated with a consistent phenotype characterized by early onset cerebral atrophy resulting in microcephaly, developmental delay, spastic quadriplegia, and seizures. The phenotype appears to be more severe among individuals with loss-of-function variants whereas those with missense variants were less severely affected suggesting a potential genotype-phenotype correlation in this disorder. A brain imaging pattern emerges which is consistent among individuals with loss-of-function variants and could potentially alert the neuroradiologists or clinician to consider WDR45B-related El-Hattab-Alkuraya syndrome.


Subject(s)
Microcephaly , Nervous System Malformations , Atrophy , Bone Diseases, Metabolic , Congenital Disorders of Glycosylation , Homozygote , Humans , Microcephaly/diagnostic imaging , Microcephaly/genetics , Microcephaly/pathology , Pedigree , Phenotype , Quadriplegia/genetics , Seizures/diagnostic imaging , Seizures/genetics
9.
Am J Med Genet A ; 188(7): 2153-2161, 2022 07.
Article in English | MEDLINE | ID: mdl-35332675

ABSTRACT

Hereditary sensory and autonomic neuropathy type 2B (HSAN2B) is a rare autosomal recessive peripheral neuropathy caused by biallelic variants in RETREG1 (formerly FAM134B). HSAN2B is characterized by sensory impairment resulting in skin ulcerations, amputations, and osteomyelitis as well as variable weakness, spasticity, and autonomic dysfunction. Here, we report four affected individuals with recurrent osteomyelitis, ulceration, and amputation of hands and feet, sensory neuropathy, hyperhidrosis, urinary incontinence, and renal failure from a family without any known shared parental ancestry. Due to the history of chronic recurrent multifocal osteomyelitis and microcytic anemia, a diagnosis of Majeed syndrome was considered; however, sequencing of LPIN2 was negative. Family-based exome sequencing (ES) revealed a novel homozygous ultrarare RETREG1 variant NM_001034850.2:c.321G>A;p.Trp107Ter. Electrophysiological studies of the proband demonstrated axonal sensorimotor neuropathy predominantly in the lower extremities. Consistent with the lack of shared ancestry, the coefficient of inbreeding calculated from ES data was low (F = 0.002), but absence of heterozygosity (AOH) analysis demonstrated a 7.2 Mb AOH block surrounding the variant consistent with a founder allele. Two of the four affected individuals had unexplained renal failure which has not been reported in HSAN2B cases to date. Therefore, this report describes a novel RETREG1 founder allele and suggests renal failure may be an unrecognized feature of the RETREG1-disease spectrum.


Subject(s)
Hereditary Sensory and Autonomic Neuropathies , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Osteomyelitis , Renal Insufficiency , Alleles , Humans , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Osteomyelitis/genetics , Pedigree
10.
Am J Med Genet A ; 188(3): 735-750, 2022 03.
Article in English | MEDLINE | ID: mdl-34816580

ABSTRACT

Genomic sequencing and clinical genomics have demonstrated that substantial subsets of atypical and/or severe disease presentations result from multilocus pathogenic variation (MPV) causing blended phenotypes. In an infant with a severe neurodevelopmental disorder, four distinct molecular diagnoses were found by exome sequencing (ES). The blended phenotype that includes brain malformation, dysmorphism, and hypotonia was dissected using the Human Phenotype Ontology (HPO). ES revealed variants in CAPN3 (c.259C > G:p.L87V), MUSK (c.1781C > T:p.A594V), NAV2 (c.1996G > A:p.G666R), and ZC4H2 (c.595A > C:p.N199H). CAPN3, MUSK, and ZC4H2 are established disease genes linked to limb-girdle muscular dystrophy (OMIM# 253600), congenital myasthenia (OMIM# 616325), and Wieacker-Wolff syndrome (WWS; OMIM# 314580), respectively. NAV2 is a retinoic-acid responsive novel disease gene candidate with biological roles in neurite outgrowth and cerebellar dysgenesis in mouse models. Using semantic similarity, we show that no gene identified by ES individually explains the proband phenotype, but rather the totality of the clinically observed disease is explained by the combination of disease-contributing effects of the identified genes. These data reveal that multilocus pathogenic variation can result in a blended phenotype with each gene affecting a different part of the nervous system and nervous system-muscle connection. We provide evidence from this n = 1 study that in patients with MPV and complex blended phenotypes resulting from multiple molecular diagnoses, quantitative HPO analysis can allow for dissection of phenotypic contribution of both established disease genes and novel disease gene candidates not yet proven to cause human disease.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Neurodevelopmental Disorders , Animals , Calpain/genetics , Egypt , Humans , Infant , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , Exome Sequencing
11.
Nature ; 538(7624): 253-256, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27698417

ABSTRACT

Atypical food intake is a primary cause of obesity and other eating and metabolic disorders. Insight into the neural control of feeding has previously focused mainly on signalling mechanisms associated with the hypothalamus, the major centre in the brain that regulates body weight homeostasis. However, roles of non-canonical central nervous system signalling mechanisms in regulating feeding behaviour have been largely uncharacterized. Acetylcholine has long been proposed to influence feeding owing in part to the functional similarity between acetylcholine and nicotine, a known appetite suppressant. Nicotine is an exogenous agonist for acetylcholine receptors, suggesting that endogenous cholinergic signalling may play a part in normal physiological regulation of feeding. However, it remains unclear how cholinergic neurons in the brain regulate food intake. Here we report that cholinergic neurons of the mouse basal forebrain potently influence food intake and body weight. Impairment of cholinergic signalling increases food intake and results in severe obesity, whereas enhanced cholinergic signalling decreases food consumption. We found that cholinergic circuits modulate appetite suppression on downstream targets in the hypothalamus. Together our data reveal the cholinergic basal forebrain as a major modulatory centre underlying feeding behaviour.


Subject(s)
Appetite Regulation/physiology , Basal Forebrain/cytology , Basal Forebrain/physiology , Cholinergic Neurons/metabolism , Feeding Behavior/physiology , Satiety Response/physiology , Acetylcholine/metabolism , Animals , Body Weight/physiology , Cell Death , Choline O-Acetyltransferase/deficiency , Cholinergic Agonists , Cholinergic Neurons/pathology , Eating/physiology , Eating/psychology , Feeding Behavior/psychology , Female , Homeostasis , Hyperphagia/enzymology , Hyperphagia/genetics , Hyperphagia/pathology , Hypothalamus/cytology , Hypothalamus/physiology , Male , Mice , Mice, Knockout , Models, Neurological , Nicotine/metabolism , Obesity/enzymology , Obesity/genetics , Obesity/pathology , Receptors, Cholinergic/metabolism
12.
Pediatr Crit Care Med ; 23(12): 1037-1046, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36200780

ABSTRACT

OBJECTIVES: To describe adherence to continuous electroencephalogram (cEEG) monitoring as part of a pediatric neurocritical care (PNCC) program for status epilepticus (SE). DESIGN: Retrospective review of pre- and postintervention cohorts. SETTING: A pediatric referral hospital. PATIENTS: Children admitted to the PICU for SE. INTERVENTIONS: We restructured the care delivery model to include a pediatric neurointensive care unit (neuro-ICU) and expanded the cEEG capacity. We created a criteria-based cEEG pathway. We provided education to all providers including the nursing staff. MEASUREMENTS AND MAIN RESULTS: The main outcomes were: 1) the percentages of children meeting American Clinical Neurophysiology Society (ACNS) criteria who underwent cEEG monitoring and 2) the time interval between PICU arrival and cEEG initiation. PICU admissions with the diagnosis of SE from May 2017 to December 2017 served as the baseline, which was compared with the same periods in 2018 to 2020 (PNCC era).There were 60 admissions in the pre-PNCC period (2017), 111 in 2018, 118 in 2019, and 108 in 2020. The percentages of admissions from each period that met ACNS criteria for cEEG monitoring were between 84% and 97%. In the pre-PNCC era, 22 of 52 (42%) admissions meeting ACNS criteria underwent cEEG monitoring. In the PNCC era, greater than or equal to 80% of the qualified admissions underwent cEEG monitoring (74/93 [80%] in 2018, 94/115 [82%] in 2019, and 87/101 [86%] in 2020). Compared with the pre-PNCC era, the neuro-ICU had a shorter interval between PICU arrival and cEEG initiation (216 min [141-1,444 min] vs 138 min [103-211 min]). CONCLUSIONS: The implementation of a PNCC program with initiatives in care delivery, allocation of resources, and education was associated with increased adherence to best care practices for the management of SE.


Subject(s)
Electroencephalography , Status Epilepticus , Child , Humans , Status Epilepticus/diagnosis , Status Epilepticus/therapy , Retrospective Studies , Hospitals, Pediatric , Hospitalization , Monitoring, Physiologic
13.
Hum Mutat ; 42(6): 762-776, 2021 06.
Article in English | MEDLINE | ID: mdl-33847017

ABSTRACT

Bi-allelic TECPR2 variants have been associated with a complex syndrome with features of both a neurodevelopmental and neurodegenerative disorder. Here, we provide a comprehensive clinical description and variant interpretation framework for this genetic locus. Through international collaboration, we identified 17 individuals from 15 families with bi-allelic TECPR2-variants. We systemically reviewed clinical and molecular data from this cohort and 11 cases previously reported. Phenotypes were standardized using Human Phenotype Ontology terms. A cross-sectional analysis revealed global developmental delay/intellectual disability, muscular hypotonia, ataxia, hyporeflexia, respiratory infections, and central/nocturnal hypopnea as core manifestations. A review of brain magnetic resonance imaging scans demonstrated a thin corpus callosum in 52%. We evaluated 17 distinct variants. Missense variants in TECPR2 are predominantly located in the N- and C-terminal regions containing ß-propeller repeats. Despite constituting nearly half of disease-associated TECPR2 variants, classifying missense variants as (likely) pathogenic according to ACMG criteria remains challenging. We estimate a pathogenic variant carrier frequency of 1/1221 in the general and 1/155 in the Jewish Ashkenazi populations. Based on clinical, neuroimaging, and genetic data, we provide recommendations for variant reporting, clinical assessment, and surveillance/treatment of individuals with TECPR2-associated disorder. This sets the stage for future prospective natural history studies.


Subject(s)
Carrier Proteins/genetics , Hereditary Sensory and Autonomic Neuropathies , Intellectual Disability , Nerve Tissue Proteins/genetics , Adolescent , Carrier Proteins/chemistry , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Family , Female , Hereditary Sensory and Autonomic Neuropathies/complications , Hereditary Sensory and Autonomic Neuropathies/diagnosis , Hereditary Sensory and Autonomic Neuropathies/genetics , Hereditary Sensory and Autonomic Neuropathies/pathology , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Magnetic Resonance Imaging , Male , Models, Molecular , Mutation, Missense , Nerve Tissue Proteins/chemistry , Neuroimaging/methods , Pedigree , Phenotype , Protein Conformation
14.
Genet Med ; 23(12): 2455-2460, 2021 12.
Article in English | MEDLINE | ID: mdl-34385670

ABSTRACT

PURPOSE: Alternative splicing plays a critical role in mouse neurodevelopment, regulating neurogenesis, cortical lamination, and synaptogenesis, yet few human neurodevelopmental disorders are known to result from pathogenic variation in splicing regulator genes. Nuclear Speckle Splicing Regulator Protein 1 (NSRP1) is a ubiquitously expressed splicing regulator not known to underlie a Mendelian disorder. METHODS: Exome sequencing and rare variant family-based genomics was performed as a part of the Baylor-Hopkins Center for Mendelian Genomics Initiative. Additional families were identified via GeneMatcher. RESULTS: We identified six patients from three unrelated families with homozygous loss-of-function variants in NSRP1. Clinical features include developmental delay, epilepsy, variable microcephaly (Z-scores -0.95 to -5.60), hypotonia, and spastic cerebral palsy. Brain abnormalities included simplified gyral pattern, underopercularization, and/or vermian hypoplasia. Molecular analysis identified three pathogenic NSRP1 predicted loss-of-function variant alleles: c.1359_1362delAAAG (p.Glu455AlafsTer20), c.1272dupG (p.Lys425GlufsTer5), and c.52C>T (p.Gln18Ter). The two frameshift variants result in a premature termination codon in the last exon, and the mutant transcripts are predicted to escape nonsense mediated decay and cause loss of a C-terminal nuclear localization signal required for NSRP1 function. CONCLUSION: We establish NSRP1 as a gene for a severe autosomal recessive neurodevelopmental disease trait characterized by developmental delay, epilepsy, microcephaly, and spastic cerebral palsy.


Subject(s)
Cerebral Palsy , Epilepsy , Microcephaly , Neurodevelopmental Disorders , Nuclear Proteins/genetics , Cerebral Palsy/genetics , Epilepsy/genetics , Humans , Microcephaly/genetics , Microcephaly/pathology , Neurodevelopmental Disorders/genetics , Pedigree , RNA Splicing
15.
Am J Med Genet A ; 185(8): 2532-2540, 2021 08.
Article in English | MEDLINE | ID: mdl-34089229

ABSTRACT

The RNA exosome is a multi-subunit complex involved in the processing, degradation, and regulated turnover of RNA. Several subunits are linked to Mendelian disorders, including pontocerebellar hypoplasia (EXOSC3, MIM #614678; EXOSC8, MIM #616081: and EXOSC9, MIM #618065) and short stature, hearing loss, retinitis pigmentosa, and distinctive facies (EXOSC2, MIM #617763). More recently, EXOSC5 (MIM *606492) was found to underlie an autosomal recessive neurodevelopmental disorder characterized by developmental delay, hypotonia, cerebellar abnormalities, and dysmorphic facies. An unusual feature of EXOSC5-related disease is the occurrence of complete heart block requiring a pacemaker in a subset of affected individuals. Here, we provide a detailed clinical and molecular characterization of two siblings with microcephaly, developmental delay, cerebellar volume loss, hypomyelination, with cardiac conduction and rhythm abnormalities including sinus node dysfunction, intraventricular conduction delay, atrioventricular block, and ventricular tachycardia (VT) due to compound heterozygous variants in EXOSC5: (1) NM_020158.4:c.341C > T (p.Thr114Ile; pathogenic, previously reported) and (2) NM_020158.4:c.302C > A (p.Thr101Lys; novel variant). A review of the literature revealed an additional family with biallelic EXOSC5 variants and cardiac conduction abnormalities. These clinical and molecular data provide compelling evidence that cardiac conduction abnormalities and arrhythmias are part of the EXOSC5-related disease spectrum and argue for proactive screening due to potential risk of sudden cardiac death.


Subject(s)
Antigens, Neoplasm/genetics , Death, Sudden, Cardiac/etiology , Exosome Multienzyme Ribonuclease Complex/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Phenotype , RNA-Binding Proteins/genetics , Atrioventricular Block/diagnosis , Atrioventricular Block/genetics , Child , Echocardiography , Electrocardiography , Facies , Female , Genetic Association Studies/methods , Humans , Male , Pedigree , Sequence Analysis, DNA , Young Adult
16.
Muscle Nerve ; 63(3): 304-310, 2021 03.
Article in English | MEDLINE | ID: mdl-33146414

ABSTRACT

BACKGROUND: The diagnosis of uncommon pediatric neuromuscular disease (NMD) is challenging due to genetic and phenotypic heterogeneity, yet is important to guide treatment, prognosis, and recurrence risk. Patients with diagnostically challenging presentations typically undergo extensive testing with variable molecular diagnostic yield. Given the advancement in next generation sequencing (NGS), we investigated the value of clinical whole exome sequencing (ES) in uncommon pediatric NMD. METHODS: A retrospective cohort study of 106 pediatric NMD patients with a combination of ES, chromosomal microarray (CMA), and candidate gene testing was completed at a large tertiary referral center. RESULTS: A molecular diagnosis was achieved in 37/79 (46%) patients with ES, 4/44 (9%) patients with CMA, and 15/74 (20%) patients with candidate gene testing. In 2/79 (3%) patients, a dual molecular diagnosis explaining the neuromuscular disease process was identified. A total of 42 patients (53%) who received ES remained without a molecular diagnosis at the conclusion of the study. CONCLUSIONS: Due to NGS, molecular diagnostic yield of rare neurological diseases is at an all-time high. We show that ES has a higher diagnostic rate compared to other genetic tests in a complex pediatric neuromuscular disease cohort and should be considered early in the diagnostic journey for select NMD patients with challenging presentations in which a clinical diagnosis is not evident.


Subject(s)
Exome Sequencing , Neuromuscular Diseases/diagnosis , Adolescent , Biopsy , Child , Child, Preschool , Cohort Studies , Electromyography , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Microarray Analysis , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , Mitochondrial Myopathies/pathology , Molecular Diagnostic Techniques , Muscular Dystrophies/diagnosis , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Myopathy, Central Core/diagnosis , Myopathy, Central Core/genetics , Myopathy, Central Core/pathology , Myositis/diagnosis , Myositis/genetics , Myositis/pathology , Neural Conduction , Neuromuscular Diseases/genetics , Neuromuscular Diseases/pathology , Retrospective Studies , Sequence Analysis, DNA , Spinal Muscular Atrophies of Childhood/diagnosis , Spinal Muscular Atrophies of Childhood/genetics , Spinal Muscular Atrophies of Childhood/pathology , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology
17.
J Neurosci ; 38(6): 1443-1461, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29305536

ABSTRACT

The mouse olfactory bulb (OB) features continued, activity-dependent integration of adult-born neurons, providing a robust model with which to examine mechanisms of plasticity in the adult brain. We previously reported that local OB interneurons secrete the neuropeptide corticotropin-releasing hormone (CRH) in an activity-dependent manner onto adult-born granule neurons and that local CRH signaling promotes expression of synaptic machinery in the bulb. This effect is mediated via activation of the CRH receptor 1 (CRHR1), which is developmentally regulated during adult-born neuron maturation. CRHR1 is a GS-protein-coupled receptor that activates CREB-dependent transcription in the presence of CRH. Therefore, we hypothesized that locally secreted CRH activates CRHR1 to initiate circuit plasticity programs. To identify such programs, we profiled gene expression changes associated with CRHR1 activity in adult-born neurons of the OB. Here, we show that CRHR1 activity influences expression of the brain-specific Homeobox-containing transcription factor POU Class 6 Homeobox 1 (POU6f1). To elucidate the contributions of POU6f1 toward activity-dependent circuit remodeling, we targeted CRHR1+ neurons in male and female mice for cell-type-specific manipulation of POU6f1 expression. Whereas loss of POU6f1 in CRHR1+ neurons resulted in reduced dendritic complexity and decreased synaptic connectivity, overexpression of POU6f1 in CRHR1+ neurons promoted dendritic outgrowth and branching and influenced synaptic function. Together, these findings suggest that the transcriptional program directed by POU6f1 downstream of local CRH signaling in adult-born neurons influences circuit dynamics in response to activity-dependent peptide signaling in the adult brain.SIGNIFICANCE STATEMENT Elucidating mechanisms of plasticity in the adult brain is helpful for devising strategies to understand and treat neurodegeneration. Circuit plasticity in the adult mouse olfactory bulb is exemplified by both continued cell integration and synaptogenesis. We previously reported that these processes are influenced by local neuropeptide signaling in an activity-dependent manner. Here, we show that local corticotropin-releasing hormone (CRH) signaling induces dynamic gene expression changes in CRH receptor expressing adult-born neurons, including altered expression of the transcription factor POU6f1 We further show that POU6f1 is necessary for proper dendrite specification and patterning, as well as synapse development and function in adult-born neurons. Together, these findings reveal a novel mechanism by which peptide signaling modulates adult brain circuit plasticity.


Subject(s)
Brain/physiology , Neuronal Plasticity/physiology , Neuropeptides/physiology , Octamer Transcription Factor-3/physiology , Animals , Behavior, Animal/physiology , Corticotropin-Releasing Hormone/physiology , Female , Gene Knock-In Techniques , Male , Mice , Mice, Knockout , Neurons/physiology , Neurons/ultrastructure , Octamer Transcription Factor-3/genetics , Olfactory Bulb/cytology , Olfactory Bulb/physiology , Receptors, Corticotropin-Releasing Hormone/physiology , Smell/physiology
SELECTION OF CITATIONS
SEARCH DETAIL