Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Waste Manag Res ; : 734242X241251417, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773885

ABSTRACT

Printed circuit boards (PCBs) are the most complex and valuable component of electronic devices, but only 34% of them are recycled in an environmentally sound manner. Improving the recycling rate and efficiency requires a fast, reliable and uncostly analytical method. Although the X-ray fluorescence (XRF) shows high potential, it is often unreliable. In this study, we propose a novel XRF methodology for the elemental analysis of PCBs, using the certified reference material (CRM) to decrease uncertainty and enhance accuracy. The results show significant improvement in robustness and accuracy of portable XRF(pXRF) analyses for elements Cu, Pb, Ni, As and Au, with a relative average inaccuracy of approximately 5% compared to referenced values. The methodology validation carried out by comparing pXRF and inductively coupled plasma mass spectroscopy analyses of personal computer motherboard samples shows no statistically significant difference for elements Cu, Cr and Ag. The study shows that the calibration of pXRF by CRMs enables the necessary analysis of PCBs in an efficient and reliable manner and could be also be applied to different types of PCBs and other electronic components, batteries or contaminated soil samples.

2.
Anal Bioanal Chem ; 414(1): 639-648, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34355254

ABSTRACT

The amyloid ß peptide, as one of the main components in senile plaque, represents a defining pathological feature for Alzheimer's disease, and is therefore commonly used as a biomarker for this disease in clinical analysis. However, the selection of suitable standards is limited here, since only a few are commercially available, and these suffer from varying purity. Hence, the accurate characterization of these standards is of great importance. In this study, we developed a method for the traceable quantification of the peptide content using species-specific isotope dilution and ICP-MS/MS detection. It is based on the separation of the sulfur-containing amino acids methionine and cysteine after oxidation and hydrolysis of the peptide. Using a strong anion exchange column, both amino acids could be separated from each other, as well as from their oxidized forms and sulfate. The sulfur content was determined via ICP-MS/MS using oxygen as reaction gas. Species-specific isotope dilution was enabled by using a 34S-labeled yeast hydrolysate, containing methionine sulfone and cysteic acid with different isotopic composition. The peptide contents of Aß standards (Aß40,42), as well as myoglobin and lysozyme with different degrees of purity, were determined. For validation purposes, the standard reference material NIST 2389a, which contains the amino acids in a similar concentration, was subjected to the developed sample preparation and analysis method. In addition to accounting for errors during sample preparation, high levels of accuracy and precision could be obtained using this method, making it fit-for-purpose for the characterization of peptide standards.


Subject(s)
Amyloid beta-Peptides , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Isotopes , Peptide Fragments , Tandem Mass Spectrometry/methods
3.
Anal Bioanal Chem ; 414(15): 4359-4368, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34642781

ABSTRACT

We introduce a new concept of yeast-derived biological matrix reference material for metabolomics research relying on in vivo synthesis of a defined biomass, standardized extraction followed by absolute quantification with isotope dilution. The yeast Pichia pastoris was grown using full control- and online monitoring fed-batch fermentations followed by fast cold methanol quenching and boiling ethanol extraction. Dried extracts served for the quantification campaign. A metabolite panel of the evolutionarily conserved primary metabolome (amino acids, nucleotides, organic acids, and metabolites of the central carbon metabolism) was absolutely quantified by isotope dilution utilizing uniformly labeled 13C-yeast-based internal standards. The study involved two independent laboratories employing complementary mass spectrometry platforms, namely hydrophilic interaction liquid chromatography-high resolution mass spectrometry (HILIC-HRMS) and gas chromatography-tandem mass spectrometry (GC-MS/MS). Homogeneity, stability tests (on a panel of >70 metabolites over a period of 6 months), and excellent biological repeatability of independent fermentations over a period of 2 years showed the feasibility of producing biological reference materials on demand. The obtained control ranges proved to be fit for purpose as they were either superior or comparable to the established reference materials in the field.


Subject(s)
Saccharomyces cerevisiae , Tandem Mass Spectrometry , Gas Chromatography-Mass Spectrometry , Isotopes/metabolism , Metabolome , Metabolomics/methods , Pichia/chemistry , Tandem Mass Spectrometry/methods
4.
Analyst ; 146(8): 2591-2599, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33734229

ABSTRACT

We propose a fully automated novel workflow for lipidomics based on flow injection, followed by liquid chromatography-high-resolution mass spectrometry (FI/LC-HRMS). The workflow combined in-depth characterization of the lipidome achieved via reversed-phase LC-HRMS with absolute quantification by using a large number of lipid species-specific and/or retention time (RT)-matched/class-specific calibrants. The lipidome of 13C-labelled yeast (LILY) provided a large panel of cost-effective internal standards (ISTDs) covering triacylglycerols (TG), steryl esters (SE), free fatty acids (FA), diacylglycerols (DG), sterols (ST), ceramides (Cer), hexosyl ceramides (HexCer), phosphatidylglycerols (PG), phosphatidylethanolamines (PE), phosphatidic acids (PA), cardiolipins (CL), phosphatidylinositols (PI), phosphatidylserines (PS), phosphatidylcholines (PC), lysophosphatidylcholines (LPC) and lysophosphatidylethanolamines (LPE). The workflow in combination with the LILY lipid panel enables simultaneous quantification via (1) external multi-point calibration with internal standardization and (2) internal one-point calibration with LILY as a surrogate ISTD, increasing the coverage while keeping the accuracy and throughput high. Extensive measures on quality control allowed us to rank the calibration strategies and to automatically select the calibration strategy of the highest metrological order for the respective lipid species. Overall, the workflow enabled a streamlined analysis, with a limit of detection in the low femtomolar range, and provided validation tools together with absolute concentration values for >350 lipids in human plasma on a species level. Based on the selected standard panel, lipids from 7 classes (LPC, LPE, PC, PE, PI, DG, TG) passed stringent quality filters, which included QC accuracy, a precision and recovery bias of <30% and concentrations within the 99% confidence interval of the international laboratory comparison of SRM 1950, NIST, USA. The quantitative values are independent of common deuterated or non-endogenous ISTDs, thus offering cross-validation of different lipid methods and further standardizing lipidomics.

5.
Anal Bioanal Chem ; 412(10): 2365-2374, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32130438

ABSTRACT

In this work, a lipidomics workflow based on offline semi-preparative lipid class-specific fractionation by supercritical fluid chromatography (SFC) followed by high-resolution mass spectrometry was introduced. The powerful SFC approach offered separation of a wide polarity range for lipids, enabled enrichment (up to 3 orders of magnitude) of lipids, selective fractionation of 14 lipid classes/subclasses, and increased dynamic range enabling in-depth characterization. A significantly increased coverage of low abundant lipids improving lipid identification by numbers and degree (species and molecular level) was obtained in Pichia pastoris when comparing high-resolution mass spectrometry based lipidomics with and without prior fractionation. Proof-of-principle experiments using a standard reference material (SRM 1950, NIST) for human plasma showed that the proposed strategy enabled quantitative lipidomics. Indeed, for 70 lipids, the consensus values available for this sample could be met. Thus, the novel workflow is ideally suited for lipid class-specific purification/isolation from milligram amounts of sample while not compromising on omics type of analysis (identification and quantification). Finally, compared with established fractionation/pre-concentration approaches, semi-preparative SFC is superior in terms of versatility, as it involved only volatile modifiers and salt additives facilitating any follow-up use such as qualitative or quantitate analysis or further purification down to the single lipid species level. Graphical Abstract.


Subject(s)
Chromatography, Supercritical Fluid/methods , Lipidomics/methods , Lipids/chemistry , Mass Spectrometry/methods , Humans , Lipid Metabolism , Lipids/blood , Pichia/chemistry , Pichia/metabolism , Plasma/chemistry
6.
Anal Bioanal Chem ; 411(14): 3103-3113, 2019 May.
Article in English | MEDLINE | ID: mdl-30972471

ABSTRACT

13C metabolite tracer and metabolic flux analyses require upfront experimental planning and validation tools. Here, we present a validation scheme including a comparison of different LC methods that allow for customization of analytical strategies for tracer studies with regard to the targeted metabolites. As the measurement of significant changes in labeling patterns depends on the spectral accuracy, we investigate this aspect comprehensively for high-resolution orbitrap mass spectrometry combined with reversed-phase chromatography, hydrophilic interaction liquid chromatography, or anion-exchange chromatography. Moreover, we propose a quality control protocol based on (1) a metabolite containing selenium to assess the instrument performance and on (2) in vivo synthesized isotopically enriched Pichia pastoris to validate the accuracy of carbon isotopologue distributions (CIDs), in this case considering each isotopologue of a targeted metabolite panel. Finally, validation involved a thorough assessment of procedural blanks and matrix interferences. We compared the analytical figures of merit regarding CID determination for over 40 metabolites between the three methods. Excellent precisions of less than 1% and trueness bias as small as 0.01-1% were found for the majority of compounds, whereas the CID determination of a small fraction was affected by contaminants. For most compounds, changes of labeling pattern as low as 1% could be measured. Graphical abstract.


Subject(s)
Carbon Isotopes/analysis , Chromatography, Ion Exchange/methods , Chromatography, Reverse-Phase/methods , Mass Spectrometry/methods , Validation Studies as Topic , Anion Exchange Resins/chemistry , Carbon Isotopes/standards , Hydrophobic and Hydrophilic Interactions , Pichia/chemistry , Reference Standards , Selenium/chemistry
7.
Anal Chem ; 90(11): 6494-6501, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29708737

ABSTRACT

Lipid identification and quantification are essential objectives in comprehensive lipidomics studies challenged by the high number of lipids, their chemical diversity, and their dynamic range. In this work, we developed a tailored method for profiling and quantification combining (1) isotope dilution, (2) enhanced isomer separation by C30 fused-core reversed-phase material, and (3) parallel Orbitrap and ion trap detection by the Orbitrap Fusion Lumos Tribid mass spectrometer. The combination of parallelizable ion analysis without time loss together with different fragmentation techniques (HCD/CID) and an inclusion list led to higher quality in lipid identifications exemplified in human plasma and yeast samples. Moreover, we used lipidome isotope-labeling of yeast (LILY)-a fast and efficient in vivo labeling strategy in Pichia pastoris-to produce (nonradioactive) isotopically labeled eukaryotic lipid standards in yeast. We integrated the 13C lipids in the LC-MS workflow to enable relative and absolute compound-specific quantification in yeast and human plasma samples by isotope dilution. Label-free and compound-specific quantification was validated by comparison against a recent international interlaboratory study on human plasma SRM 1950. In this way, we were able to prove that LILY enabled quantification leads to accurate results, even in complex matrices. Excellent analytical figures of merit with enhanced trueness, precision and linearity over 4-5 orders of magnitude were observed applying compound-specific quantification with 13C-labeled lipids. We strongly believe that lipidomics studies will benefit from incorporating isotope dilution and LC-MSn strategies.


Subject(s)
Chromatography, Reverse-Phase/methods , Lipids/blood , Mass Spectrometry/methods , Carbon Isotopes/analysis , Carbon Isotopes/blood , Humans , Indicator Dilution Techniques , Lipids/analysis , Workflow , Yeasts/chemistry
8.
Anal Chem ; 90(5): 3156-3164, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29381867

ABSTRACT

METLIN originated as a database to characterize known metabolites and has since expanded into a technology platform for the identification of known and unknown metabolites and other chemical entities. Through this effort it has become a comprehensive resource containing over 1 million molecules including lipids, amino acids, carbohydrates, toxins, small peptides, and natural products, among other classes. METLIN's high-resolution tandem mass spectrometry (MS/MS) database, which plays a key role in the identification process, has data generated from both reference standards and their labeled stable isotope analogues, facilitated by METLIN-guided analysis of isotope-labeled microorganisms. The MS/MS data, coupled with the fragment similarity search function, expand the tool's capabilities into the identification of unknowns. Fragment similarity search is performed independent of the precursor mass, relying solely on the fragment ions to identify similar structures within the database. Stable isotope data also facilitate characterization by coupling the similarity search output with the isotopic m/ z shifts. Examples of both are demonstrated here with the characterization of four previously unknown metabolites. METLIN also now features in silico MS/MS data, which has been made possible through the creation of algorithms trained on METLIN's MS/MS data from both standards and their isotope analogues. With these informatic and experimental data features, METLIN is being designed to address the characterization of known and unknown molecules.


Subject(s)
Cell Extracts/analysis , Databases, Chemical/statistics & numerical data , Datasets as Topic/statistics & numerical data , Metabolomics/methods , Metabolomics/statistics & numerical data , Pichia/chemistry , Pichia/metabolism , Tandem Mass Spectrometry/statistics & numerical data
9.
Analyst ; 144(1): 220-229, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30411762

ABSTRACT

A novel integrated metabolomics/lipidomics workflow is introduced enabling high coverage of polar metabolites and non-polar lipids within one analytical run. Dual HILIC and RP chromatography were combined to high-resolution mass spectrometry. As a major advantage, only one data file per sample was obtained by fully automated simultaneous analysis of two extracts per sample. Hence, the unprecedented high coverage without compromise on analytical throughput was not only obtained by the orthogonality of the chromatographic separations, but also by the implementation of dedicated sample preparation procedures resulting in optimum extraction efficiency for both sub-omes. Thus, the method addressed completely hydrophilic sugars and organic acids next to water-insoluble triglycerides. As for the timing of the dual chromatography setup, HILIC and RP separation were performed consecutively. However, re-equilibration of the HILIC column during elution of RP compounds and vice versa reduced the overall analysis time by one third to 32 min. Application to the Standard Reference Material SRM 1950 - Metabolites in Frozen Human Plasma resulted in >100 metabolite and >380 lipid identifications based on accurate mass implementing fast polarity switching and acquiring data dependent MS2 spectra with the use of automated exclusion lists. Targeted quantification based on external calibrations and 13C labeled yeast internal standards was successfully accomplished for 59 metabolites. Moreover, the potential for lipid quantification was shown integrating non-endogenous lipids as internal standards. In human plasma, concentrations ranging over 4 orders of magnitude (low nM to high µM) were assessed.


Subject(s)
Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods , Lipids/blood , Metabolomics/methods , Humans , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry/methods
10.
Anal Chem ; 89(14): 7667-7674, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28581703

ABSTRACT

In this work, simultaneous targeted metabolic profiling by isotope dilution and non-targeted fingerprinting is proposed for cancer cell studies. The novel streamlined metabolomics workflow was established using anion-exchange chromatography (IC) coupled to high-resolution mass spectrometry (MS). The separation time of strong anion-exchange (2 mm column, flow rate 380 µL min-1, injection volume 5 µL) could be decreased to 25 min for a target list comprising organic acids, sugars, sugar phosphates, and nucleotides. Internal standardization by fully 13C labeled Pichia pastoris extracts enabled absolute quantification of the primary metabolites in adherent cancer cell models. Limits of detection (LODs) in the low nanomolar range and excellent intermediate precisions of the isotopologue ratios (on average <5%, N = 5, over 40 h) were observed. As a result of internal standardization, linear dynamic ranges over 4 orders of magnitude (5 nM-50 µM, R2 > 0.99) were obtained. Experiments on drug-sensitive versus resistant SW480 cancer cells showed the feasibility of merging analytical tasks into one analytical run. Comparing fingerprinting with and without internal standard proved that the presence of the 13C labeled yeast extract required for absolute quantification was not detrimental to non-targeted data evaluation. Several interesting metabolites were discovered by accurate mass and comparing MS2 spectra (acquired in ddMS2 mode) with spectral libraries. Significant differences revealed distinct metabolic phenotypes of drug-sensitive and resistant SW480 cells.


Subject(s)
Metabolomics , Carbon Isotopes , Chromatography, Ion Exchange , Humans , Mass Spectrometry , Pichia/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL