Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(5): 893, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868210

ABSTRACT

Enhanced by polyamide surfactant Syn3, intravesical administration of rAd-IFNα2b results in transduction of the virus into the bladder epithelium, resulting in the synthesis and expression of local IFNα2b cytokine. Upon secretion, IFNα2b binds to the IFNα receptor on bladder cancer and other cells, resulting in signaling via the JAK-STAT pathway. A plethora of induced IFN-stimulated genes containing IFN-sensitive response elements that contribute to activation of pathways restrict cancer growth.


Subject(s)
Janus Kinases , Urinary Bladder Neoplasms , Humans , STAT Transcription Factors , Signal Transduction , Adenoviridae , Interferon-alpha , Genetic Therapy
2.
Blood ; 142(3): 290-305, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37192286

ABSTRACT

Despite >80 years of clinical experience with coagulation factor VIII (FVIII) inhibitors, surprisingly little is known about the in vivo mechanism of this most serious complication of replacement therapy for hemophilia A. These neutralizing antidrug alloantibodies arise in ∼30% of patients. Inhibitor formation is T-cell dependent, but events leading up to helper T-cell activation have been elusive because of, in part, the complex anatomy and cellular makeup of the spleen. Here, we show that FVIII antigen presentation to CD4+ T cells critically depends on a select set of several anatomically distinct antigen-presenting cells, whereby marginal zone B cells and marginal zone and marginal metallophilic macrophages but not red pulp macrophages (RPMFs) participate in shuttling FVIII to the white pulp in which conventional dendritic cells (DCs) prime helper T cells, which then differentiate into follicular helper T (Tfh) cells. Toll-like receptor 9 stimulation accelerated Tfh cell responses and germinal center and inhibitor formation, whereas systemic administration of FVIII alone in hemophilia A mice increased frequencies of monocyte-derived and plasmacytoid DCs. Moreover, FVIII enhanced T-cell proliferation to another protein antigen (ovalbumin), and inflammatory signaling-deficient mice were less likely to develop inhibitors, indicating that FVIII may have intrinsic immunostimulatory properties. Ovalbumin, which, unlike FVIII, is absorbed into the RPMF compartment, fails to elicit T-cell proliferative and antibody responses when administered at the same dose as FVIII. Altogether, we propose that an antigen trafficking pattern that results in efficient in vivo delivery to DCs and inflammatory signaling, shape the immunogenicity of FVIII.


Subject(s)
CD4-Positive T-Lymphocytes , Factor VIII , Hemophilia A , Hemostatics , Animals , Mice , Dendritic Cells/metabolism , Factor VIII/immunology , Factor VIII/therapeutic use , Hemophilia A/drug therapy , Hemostatics/immunology , Hemostatics/therapeutic use , Ovalbumin/immunology
3.
Mol Ther ; 32(2): 325-339, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38053332

ABSTRACT

Upon viral infection of the liver, CD8+ T cell responses may be triggered despite the immune suppressive properties that manifest in this organ. We sought to identify pathways that activate responses to a neoantigen expressed in hepatocytes, using adeno-associated viral (AAV) gene transfer. It was previously established that cooperation between plasmacytoid dendritic cells (pDCs), which sense AAV genomes by Toll-like receptor 9 (TLR9), and conventional DCs promotes cross-priming of capsid-specific CD8+ T cells. Surprisingly, we find local initiation of a CD8+ T cell response against antigen expressed in ∼20% of murine hepatocytes, independent of TLR9 or type I interferons and instead relying on IL-1 receptor 1-MyD88 signaling. Both IL-1α and IL-1ß contribute to this response, which can be blunted by IL-1 blockade. Upon AAV administration, IL-1-producing pDCs infiltrate the liver and co-cluster with XCR1+ DCs, CD8+ T cells, and Kupffer cells. Analogous events were observed following coagulation factor VIII gene transfer in hemophilia A mice. Therefore, pDCs have alternative means of promoting anti-viral T cell responses and participate in intrahepatic immune cell networks similar to those that form in lymphoid organs. Combined TLR9 and IL-1 blockade may broadly prevent CD8+ T responses against AAV capsid and transgene product.


Subject(s)
CD8-Positive T-Lymphocytes , Myeloid Differentiation Factor 88 , Animals , Mice , Capsid Proteins , Dendritic Cells , Interleukin-1/metabolism , Liver/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
4.
Blood ; 140(10): 1075-1085, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35793465

ABSTRACT

Disorders of coagulation, resulting in serious risks for bleeding, may be caused by autoantibody formation or by mutations in genes encoding coagulation factors. In the latter case, antidrug antibodies (ADAs) may form against the clotting factor protein drugs used in replacement therapy, as is well documented in the treatment of the X-linked disease hemophilia. Such neutralizing antibodies against factors VIII or IX substantially complicate treatment. Autoantibody formation against factor VIII leads to acquired hemophilia. Although rare, antibody formation may occur in the treatment of other clotting factor deficiencies (eg, against von Willebrand factor [VWF]). The main strategies that have emerged to address these immune responses include (1) clinical immune tolerance induction (ITI) protocols; (2) immune suppression therapies (ISTs); and (3) the development of drugs that can improve hemostasis while bypassing the antibodies against coagulation factors altogether (some of these nonfactor therapies/NFTs are antibody-based, but they are distinct from traditional immunotherapy as they do not target the immune system). Choice of immune or alternative therapy and criteria for selection of a specific regimen for inherited and autoimmune bleeding disorders are explained. ITI serves as an important proof of principle that antigen-specific immune tolerance can be achieved in humans through repeated antigen administration, even in the absence of immune suppression. Finally, novel immunotherapy approaches that are still in the preclinical phase, such as cellular (for instance, regulatory T cell [Treg]) immunotherapies, gene therapy, and oral antigen administration, are discussed.


Subject(s)
Hemophilia A , Hemostatics , Autoantibodies , Blood Coagulation Factors/therapeutic use , Factor VIII/genetics , Factor VIII/therapeutic use , Hemophilia A/drug therapy , Hemophilia A/therapy , Hemorrhage/drug therapy , Hemorrhage/therapy , Hemostatics/therapeutic use , Humans , Immune Tolerance , von Willebrand Factor/therapeutic use
5.
Anal Chem ; 95(29): 10864-10868, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37436182

ABSTRACT

Recombinant adeno-associated virus (rAAV) is a leading gene therapy vector. However, neutralizing antibodies reduce its efficacy. Traditional methods used to investigate antibody binding provide limited information. Here, charge detection mass spectrometry (CD-MS) was used to investigate the binding of monoclonal antibody ADK8 to AAV serotype 8 (AAV8). CD-MS provides a label-free approach to antibody binding. Individual binding events can be monitored as each event is indicated by a shift of the antibody-antigen complex to a higher mass. Unlike other methods, the CD-MS approach reveals the distribution of antibodies bound on capsids, allowing AAV8 subpopulations with different affinities to be identified. The charge state generated by the electrospray of large ions is normally correlated with the structure, and the charge is expected to increase when an antibody binds to the capsid exterior. Surprisingly, binding of the first ADK8 to AAV8 causes a substantial decrease in the charge, suggesting that the first antibody binding event causes a significant structural change. The charge increases for subsequent binding events. Finally, high ADK8 concentrations cause agglutination, where ADK8 links AAV capsids to form dimers and higher order multimers.


Subject(s)
Antibodies, Neutralizing , Dependovirus , Dependovirus/chemistry , Capsid/chemistry , Capsid Proteins/chemistry , Genetic Vectors
6.
Cell Immunol ; 391-392: 104742, 2023.
Article in English | MEDLINE | ID: mdl-37423874

ABSTRACT

Oral immunotherapies are being developed for various autoimmune diseases and allergies to suppress immune responses in an antigen-specific manner. Previous studies have shown that anti-drug antibody (inhibitor) formation in protein replacement therapy for the inherited bleeding disorder hemophilia can be prevented by repeated oral delivery of coagulation factor antigens bioencapsulated in transplastomic lettuce cells. Here, we find that this approach substantially reduces antibody development against factor VIII in hemophilia A mice treated with adeno-associated viral gene transfer. We propose that the concept of oral tolerance can be applied to prevent immune responses against therapeutic transgene products expressed in gene therapy.


Subject(s)
Hemophilia A , Immune Tolerance , Mice , Animals , Genetic Therapy , Hemophilia A/genetics , Hemophilia A/therapy , Factor VIII/genetics , Antigens , Antibodies
7.
Cell Immunol ; 385: 104675, 2023 03.
Article in English | MEDLINE | ID: mdl-36746071

ABSTRACT

Active tolerance to ingested dietary antigens forms the basis for oral immunotherapy to food allergens or autoimmune self-antigens. Alternatively, oral administration of anti-CD3 monoclonal antibody can be effective in modulating systemic immune responses without T cell depletion. Here we assessed the efficacy of full length and the F(ab')2 fragment of oral anti-CD3 to prevent anti-drug antibody (ADA) formation to clotting factor VIII (FVIII) protein replacement therapy in hemophilia A mice. A short course of low dose oral anti-CD3 F(ab')2 reduced the production of neutralizing ADAs, and suppression was significantly enhanced when oral anti-CD3 was timed concurrently with FVIII administration. Tolerance was accompanied by the early induction of FoxP3+LAP-, FoxP3+LAP+, and FoxP3-LAP+ populations of CD4+ T cells in the spleen and mesenteric lymph nodes. FoxP3+LAP+ Tregs expressing CD69, CTLA-4, and PD1 persisted in spleens of treated mice, but did not produce IL-10. Finally, we attempted to combine the anti-CD3 approach with oral intake of FVIII antigen (using our previously established method of using lettuce plant cells transgenic for FVIII antigen fused to cholera toxin B (CTB) subunit, which suppresses ADAs in part through induction of IL-10 producing FoxP3-LAP+ Treg). However, combining these two approaches failed to improve suppression of ADAs. We conclude that oral anti-CD3 treatment is a promising approach to prevention of ADA formation in systemic protein replacement therapy, albeit via mechanisms distinct from and not synergistic with oral intake of bioencapsulated antigen.


Subject(s)
Hemophilia A , Mice , Animals , Hemophilia A/drug therapy , Factor VIII , Interleukin-10/metabolism , Antibody Formation , Antibodies, Monoclonal , Forkhead Transcription Factors/metabolism , Immune Tolerance , T-Lymphocytes, Regulatory
8.
Mol Ther ; 30(12): 3542-3551, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36242517

ABSTRACT

Hemophilia A gene therapy targets hepatocytes to express B domain deleted (BDD) clotting factor VIII (FVIII) to permit viral encapsidation. Since BDD is prone to misfolding in the endoplasmic reticulum (ER) and ER protein misfolding in hepatocytes followed by high-fat diet (HFD) can cause hepatocellular carcinoma (HCC), we studied how FVIII misfolding impacts HCC development using hepatocyte DNA delivery to express three proteins from the same parental vector: (1) well-folded cytosolic dihydrofolate reductase (DHFR); (2) BDD-FVIII, which is prone to misfolding in the ER; and (3) N6-FVIII, which folds more efficiently than BDD-FVIII. One week after DNA delivery, when FVIII expression was undetectable, mice were fed HFD for 65 weeks. Remarkably, all mice that received BDD-FVIII vector developed liver tumors, whereas only 58% of mice that received N6 and no mice that received DHFR vector developed liver tumors, suggesting that the degree of protein misfolding in the ER increases predisposition to HCC in the context of an HFD and in the absence of viral transduction. Our findings raise concerns of ectopic BDD-FVIII expression in hepatocytes in the clinic, which poses risks independent of viral vector integration. Limited expression per hepatocyte and/or use of proteins that avoid misfolding may enhance safety.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Hepatocytes , DNA , Blood Coagulation Factors
9.
Mol Ther ; 30(12): 3552-3569, 2022 12 07.
Article in English | MEDLINE | ID: mdl-35821634

ABSTRACT

Hepatic adeno-associated viral (AAV) gene transfer has the potential to cure the X-linked bleeding disorder hemophilia A. However, declining therapeutic coagulation factor VIII (FVIII) expression has plagued clinical trials. To assess the mechanistic underpinnings of this loss of FVIII expression, we developed a hemophilia A mouse model that shares key features observed in clinical trials. Following liver-directed AAV8 gene transfer in the presence of rapamycin, initial FVIII protein expression declines over time in the absence of antibody formation. Surprisingly, loss of FVIII protein production occurs despite persistence of transgene and mRNA, suggesting a translational shutdown rather than a loss of transduced hepatocytes. Some of the animals develop ER stress, which may be linked to hepatic inflammatory cytokine expression. FVIII protein expression is preserved by interleukin-15/interleukin-15 receptor blockade, which suppresses CD8+ T and natural killer cell responses. Interestingly, mice with initial FVIII levels >100% of normal had diminishing expression while still under immune suppression. Taken together, our findings of interanimal variability of the response, and the ability of the immune system to shut down transgene expression without utilizing cytolytic or antibody-mediated mechanisms, illustrate the challenges associated with FVIII gene transfer. Our protocols based upon cytokine blockade should help to maintain efficient FVIII expression.


Subject(s)
Factor VIII , Interleukin-15 , Mice , Animals , Factor VIII/genetics , Interleukin-15/genetics , Sirolimus/pharmacology
10.
Proc Natl Acad Sci U S A ; 117(3): 1678-1688, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31915293

ABSTRACT

Primary human hepatocytes (PHHs) are an essential tool for modeling drug metabolism and liver disease. However, variable plating efficiencies, short lifespan in culture, and resistance to genetic manipulation have limited their use. Here, we show that the pyrrolizidine alkaloid retrorsine improves PHH repopulation of chimeric mice on average 10-fold and rescues the ability of even poorly plateable donor hepatocytes to provide cells for subsequent ex vivo cultures. These mouse-passaged (mp) PHH cultures overcome the marked donor-to-donor variability of cryopreserved PHH and remain functional for months as demonstrated by metabolic assays and infection with hepatitis B virus and Plasmodium falciparum mpPHH can be efficiently genetically modified in culture, mobilized, and then recultured as spheroids or retransplanted to create highly humanized mice that carry a genetically altered hepatocyte graft. Together, these advances provide flexible tools for the study of human liver disease and evaluation of hepatocyte-targeted gene therapy approaches.


Subject(s)
Hepatocytes/drug effects , Hepatocytes/metabolism , Liver Diseases/genetics , Pyrrolizidine Alkaloids/pharmacology , Animals , Cell Transplantation , Chimera , Disease Models, Animal , Female , Genetic Therapy , Hepatitis B , Hepatitis B virus , Hepatocytes/transplantation , Homeodomain Proteins/genetics , Humans , Hydrolases/genetics , Interleukin Receptor Common gamma Subunit/genetics , Liver/pathology , Liver Diseases/pathology , Malaria , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Plasmodium falciparum
11.
Plant Biotechnol J ; 19(10): 1952-1966, 2021 10.
Article in English | MEDLINE | ID: mdl-33949086

ABSTRACT

Anti-drug antibody (ADA) formation is a major complication in treatment of the X-linked bleeding disorder haemophilia B (deficiency in coagulation factor IX, FIX). Current clinical immune tolerance protocols are often not effective due to complications such as anaphylactic reactions against FIX. Plant-based oral tolerance induction may address this problem, as illustrated by the recent first regulatory approval of orally delivered plant cells to treat peanut allergy. Our previous studies showed that oral delivery of plant cells expressing FIX fused to the transmucosal carrier CTB (cholera toxin subunit B) in chloroplasts suppressed ADA in animals with haemophilia B. We report here creation of the first lettuce transplastomic lines expressing a coagulation factor, in the absence of antibiotic resistance gene. Stable integration of the CTB-FIX gene and homoplasmy (transformation of ˜10 000 copies in each cell) were maintained in both T1 and T2 generation marker-free plants. CTB-FIX expression in lyophilized leaves of T1 and T2 marker-free plants was 1.0-1.5 mg/g dry weight, confirming that the marker excision did not affect antigen levels. Oral administration of CTB-FIX to Sprague Dawley rats at 0.25, 1 or 2.5 mg/kg did not produce overt adverse effects or toxicity. The no-observed-adverse-effect level (NOAEL) is at least 2.5 mg/kg for a single oral administration in rats. Oral administration of CTB-FIX at 0.3 or 1.47 mg/kg either mixed in food or as an oral suspension to Beagle dogs did not produce any observable toxicity. These toxicology studies should facilitate filing of regulatory approval documents and evaluation in haemophilia B patients.


Subject(s)
Hemophilia B , Administration, Oral , Animals , Chloroplasts , Cholera Toxin , Dogs , Factor IX/genetics , Hemophilia B/drug therapy , Humans , Rats , Rats, Sprague-Dawley
12.
Cell Immunol ; 359: 104251, 2021 01.
Article in English | MEDLINE | ID: mdl-33248367

ABSTRACT

Oral antigen administration to induce regulatory T cells (Treg) takes advantage of regulatory mechanisms that the gastrointestinal tract utilizes to promote unresponsiveness against food antigens or commensal microorganisms. Recently, antigen-based oral immunotherapies (OITs) have shown efficacy as treatment for food allergy and autoimmune diseases. Similarly, OITs appear to prevent anti-drug antibody responses in replacement therapy for genetic diseases. Intestinal epithelial cells and microbiota possibly condition dendritic cells (DC) toward a tolerogenic phenotype that induces Treg via expression of several mediators, e.g. IL-10, transforming growth factor-ß, retinoic acid. Several factors, such as metabolites derived from microbiota or diet, impact the stability and expansion of these induced Treg, which include, but are not limited to, FoxP3+ Treg, LAP+ Treg, and/or Tr1 cells. Here, we review various orally induced Treg, their plasticity and cooperation between the Treg subsets, as well as underlying mechanisms controlling their induction and role in oral tolerance.


Subject(s)
Immune Tolerance/immunology , Immunotherapy/methods , T-Lymphocytes, Regulatory/immunology , Administration, Oral , Allergens/immunology , Animals , Dendritic Cells/immunology , Food Hypersensitivity/immunology , Forkhead Transcription Factors/metabolism , Humans , Immunologic Factors , Intestinal Mucosa/immunology , Intestines/immunology , Peptides/metabolism , Protein Precursors/metabolism , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/metabolism
13.
Blood ; 133(5): 407-414, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30559260

ABSTRACT

In contrast to other diverse therapies for the X-linked bleeding disorder hemophilia that are currently in clinical development, gene therapy holds the promise of a lasting cure with a single drug administration. Near-to-complete correction of hemophilia A (factor VIII deficiency) and hemophilia B (factor IX deficiency) have now been achieved in patients by hepatic in vivo gene transfer. Adeno-associated viral vectors with different viral capsids that have been engineered to express high-level, and in some cases hyperactive, coagulation factors were employed. Patient data support that sustained endogenous production of clotting factor as a result of gene therapy eliminates the need for infusion of coagulation factors (or alternative drugs that promote coagulation), and may therefore ultimately also reduce treatment costs. However, mild liver toxicities have been observed in some patients receiving high vector doses. In some but not all instances, the toxicities correlated with a T-cell response directed against the viral capsid, prompting use of immune suppression. In addition, not all patients can be treated because of preexisting immunity to viral capsids. Nonetheless, studies in animal models of hemophilia suggest that the approach can also be used for immune tolerance induction to prevent or eliminate inhibitory antibodies against coagulation factors. These can form in traditional protein replacement therapy and represent a major complication of treatment. The current review provides a summary and update on advances in clinical gene therapies for hemophilia and its continued development.


Subject(s)
Genetic Therapy/methods , Hemophilia A/therapy , Hemophilia B/therapy , Animals , Blood Coagulation Factors/genetics , Dependovirus/genetics , Genetic Vectors/genetics , Genetic Vectors/therapeutic use , Hemophilia A/genetics , Hemophilia B/genetics , Humans
14.
Mol Ther ; 28(4): 997-1015, 2020 04 08.
Article in English | MEDLINE | ID: mdl-31843450

ABSTRACT

For decades, the monogenetic bleeding disorders hemophilia A and B (coagulation factor VIII and IX deficiency) have been treated with systemic protein replacement therapy. Now, diverse molecular medicines, ranging from antibody to gene to RNA therapy, are transforming treatment. Traditional replacement therapy requires twice to thrice weekly intravenous infusions of factor. While extended half-life products may reduce the frequency of injections, patients continue to face a lifelong burden of the therapy, suboptimal protection from bleeding and joint damage, and potential development of neutralizing anti-drug antibodies (inhibitors) that require less efficacious bypassing agents and further reduce quality of life. Novel non-replacement and gene therapies aim to address these remaining issues. A recently approved factor VIII-mimetic antibody accomplishes hemostatic correction in patients both with and without inhibitors. Antibodies against tissue factor pathway inhibitor (TFPI) and antithrombin-specific small interfering RNA (siRNA) target natural anticoagulant pathways to rebalance hemostasis. Adeno-associated virus (AAV) gene therapy provides lasting clotting factor replacement and can also be used to induce immune tolerance. Multiple gene-editing techniques are under clinical or preclinical investigation. Here, we provide a comprehensive overview of these approaches, explain how they differ from standard therapies, and predict how the hemophilia treatment landscape will be reshaped.


Subject(s)
Antibodies, Bispecific/therapeutic use , Genetic Therapy/methods , Hemophilia A/therapy , Hemophilia B/therapy , RNA, Small Interfering/therapeutic use , Clinical Trials as Topic , Dependovirus/genetics , Factor VIII , Hemophilia A/genetics , Hemophilia B/genetics , Humans , Molecular Mimicry
15.
Mol Ther ; 28(3): 709-722, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31968213

ABSTRACT

Several viral vector-based gene therapy drugs have now received marketing approval. A much larger number of additional viral vectors are in various stages of clinical trials for the treatment of genetic and acquired diseases, with many more in pre-clinical testing. Efficiency of gene transfer and ability to provide long-term therapy make these vector systems very attractive. In fact, viral vector gene therapy has been able to treat or even cure diseases for which there had been no or only suboptimal treatments. However, innate and adaptive immune responses to these vectors and their transgene products constitute substantial hurdles to clinical development and wider use in patients. This review provides an overview of the type of immune responses that have been documented in animal models and in humans who received gene transfer with one of three widely tested vector systems, namely adenoviral, lentiviral, or adeno-associated viral vectors. Particular emphasis is given to mechanisms leading to immune responses, efforts to reduce vector immunogenicity, and potential solutions to the problems. At the same time, we point out gaps in our knowledge that should to be filled and problems that need to be addressed going forward.


Subject(s)
Genetic Vectors/genetics , Immunity , Viruses/genetics , Adaptive Immunity , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Genetic Vectors/adverse effects , Genetic Vectors/immunology , Host-Pathogen Interactions/immunology , Humans , Immune Tolerance , Immunity, Innate , Signal Transduction , Viruses/immunology
16.
Mol Ther ; 28(3): 758-770, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31780366

ABSTRACT

Adeno-associated virus (AAV) vectors are widely used in clinical gene therapy to correct genetic disease by in vivo gene transfer. Although the vectors are useful, in part because of their limited immunogenicity, immune responses directed at vector components have complicated applications in humans. These include, for instance, innate immune sensing of vector components by plasmacytoid dendritic cells (pDCs), which sense the vector DNA genome via Toll-like receptor 9. Adaptive immune responses employ antigen presentation by conventional dendritic cells (cDCs), which leads to cross-priming of capsid-specific CD8+ T cells. In this study, we sought to determine the mechanisms that promote licensing of cDCs, which is requisite for CD8+ T cell activation. Blockage of type 1 interferon (T1 IFN) signaling by monoclonal antibody therapy prevented cross-priming. Furthermore, experiments in cell-type-restricted knockout mice showed a specific requirement for the receptor for T1 IFN (IFNaR) in cDCs. In contrast, natural killer (NK) cells are not needed, indicating a direct rather than indirect effect of T1 IFN on cDCs. In addition, co-stimulation by CD4+ T cells via CD40-CD40L was required for cross-priming, and blockage of co-stimulation but not of T1 IFN additionally reduced antibody formation against capsid. These mechanistic insights inform the development of targeted immune interventions.


Subject(s)
Capsid/immunology , Cross-Priming/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Interferon Type I/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , CD40 Antigens/metabolism , CD40 Ligand/metabolism , Capsid Proteins/immunology , Dependovirus/immunology , Gene Deletion , Genetic Therapy/adverse effects , Genetic Vectors/adverse effects , Genetic Vectors/genetics , Genetic Vectors/immunology , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Models, Biological , Receptor, Interferon alpha-beta/genetics , Signal Transduction , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
17.
Mol Ther ; 32(6): 1597, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38763141
18.
Mol Ther ; 32(7): 2040-2041, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38889715
19.
SELECTION OF CITATIONS
SEARCH DETAIL