Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 19(9): 1037, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29449629

ABSTRACT

In the version of this article initially published, a source of funding (Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS R12/29 to C.K. and I.P.)) was not included in the Acknowledgments section. The correct statement is as follows: "Supported by Deutsche Forschungsgemeinschaft, (SFB900/B8 to C.K. and I.P.; and PR727/4-1 to I.P.), Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS R12/29 to C.K. and I.P.) and the German Federal Ministry of Education and Research (01EO1302 to C.S.-F., C.K. and I.P.)." The error has been corrected in the HTML and PDF versions of the article.

2.
Nat Immunol ; 18(4): 393-401, 2017 04.
Article in English | MEDLINE | ID: mdl-28218745

ABSTRACT

To investigate how the human γδ T cell pool is shaped during ontogeny and how it is regenerated after transplantation of hematopoietic stem cells (HSCs), we applied an RNA-based next-generation sequencing approach to monitor the dynamics of the repertoires of γδ T cell antigen receptors (TCRs) before and after transplantation in a prospective cohort study. We found that repertoires of rearranged genes encoding γδ TCRs (TRG and TRD) in the peripheral blood of healthy adults were stable over time. Although a large fraction of human TRG repertoires consisted of public sequences, the TRD repertoires were private. In patients undergoing HSC transplantation, γδ T cells were quickly reconstituted; however, they had profoundly altered TCR repertoires. Notably, the clonal proliferation of individual virus-reactive γδ TCR sequences in patients with reactivation of cytomegalovirus revealed strong evidence for adaptive anti-viral γδ T cell immune responses.


Subject(s)
Clonal Evolution , Cytomegalovirus Infections/immunology , Hematopoietic Stem Cell Transplantation , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Clonal Evolution/genetics , Clonal Evolution/immunology , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/virology , Gene Rearrangement, T-Lymphocyte , Graft Survival , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Transplantation, Homologous
3.
Blood ; 144(3): 296-307, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38669617

ABSTRACT

ABSTRACT: Patients with acute myeloid leukemia (AML) who experience relapse following allogeneic hematopoietic cell transplantation (alloHCT) face unfavorable outcomes regardless of the chosen relapse treatment. Early detection of relapse at the molecular level by measurable residual disease (MRD) assessment enables timely intervention, which may prevent hematological recurrence of the disease. It remains unclear whether molecular MRD assessment can detect MRD before impending relapse and, if so, how long in advance. This study elucidates the molecular architecture and kinetics preceding AML relapse by using error-corrected next-generation sequencing (NGS) in 74 patients with AML relapsing after alloHCT, evaluating 140 samples from peripheral blood collected 0.6 to 14 months before relapse. At least 1 MRD marker became detectable in 10%, 38%, and 64% of patients at 6, 3, and 1 month before relapse, respectively. By translating these proportions into monitoring intervals, 38% of relapses would have been detected through MRD monitoring every 3 months, whereas 64% of relapses would have been detected with monthly intervals. The relapse kinetics after alloHCT are influenced by the functional class of mutations and their stability during molecular progression. Notably, mutations in epigenetic modifier genes exhibited a higher prevalence of MRD positivity and greater stability before relapse, whereas mutations in signaling genes demonstrated a shorter lead time to relapse. Both DTA (DNMT3A, TET2, and ASXL1) and non-DTA mutations displayed similar relapse kinetics during the follow-up period after alloHCT. Our study sets a framework for MRD monitoring after alloHCT by NGS, supporting monthly monitoring from peripheral blood using all variants that are known from diagnosis.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Neoplasm, Residual , Transplantation, Homologous , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , Male , Middle Aged , Female , Neoplasm, Residual/diagnosis , Adult , Aged , Mutation , High-Throughput Nucleotide Sequencing , Recurrence , Young Adult , Adolescent
4.
Blood ; 2024 04 30.
Article in English | MEDLINE | ID: mdl-38687605

ABSTRACT

Mutations in UBA1, which are disease-defining for VEXAS syndrome, have been reported in patients diagnosed with myelodysplastic syndromes (MDS). Here, we define the prevalence and clinical associations of UBA1 mutations in a representative cohort of patients with MDS. Digital droplet PCR profiling of a selected cohort of 375 male patients lacking MDS disease-defining mutations or established WHO disease classification identified 28 patients (7%) with UBA1 p.M41T/V/L mutations. Using targeted sequencing of UBA1 in a representative MDS cohort (n=2,027), we identified an additional 27 variants in 26 patients (1%), which we classified as likely/pathogenic (n=12) and unknown significance (n=15). Among the total 40 patients with likely/pathogenic variants (2%), all were male and 63% were classified by WHO2016 as MDS-MLD/SLD. Patients had a median of one additional myeloid gene mutation, often in TET2 (n=12), DNMT3A (n=10), ASXL1 (n=3), or SF3B1 (n=3). Retrospective clinical review where possible showed that 83% (28/34) UBA1-mutant cases had VEXAS-associated diagnoses or inflammatory clinical presentation. The prevalence of UBA1-mutations in MDS patients argues for systematic screening for UBA1 in the management of MDS.

5.
Blood ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958467

ABSTRACT

Myelodysplastic syndromes/neoplasms (MDS) are clonal hematologic disorders characterized by morphologic abnormalities of myeloid cells and peripheral cytopenias. While genetic abnormalities underlie the pathogenesis of these disorders and their heterogeneity, current classifications of MDS rely predominantly on morphology. We performed genomic profiling of 3,233 patients with MDS or related disorders to delineate molecular subtypes and define their clinical implications. Gene mutations, copy-number alterations (CNAs), and copy-neutral loss of heterozygosity (cnLOH) were derived from targeted sequencing of a 152-gene panel, with abnormalities identified in 91, 43, and 11% of patients, respectively. We characterized 16 molecular groups, encompassing 86% of patients, using information from 21 genes, 6 cytogenetic events, and LOH at the TP53 and TET2 loci. Two residual groups defined by negative findings (molecularly not-otherwise specified, absence of recurrent drivers) comprised 14% of patients. The groups varied in size from 0.5% to 14% of patients and were associated with distinct clinical phenotypes and outcomes. The median bone marrow blast percentage across groups ranged from 1.5 to 10%, and the median overall survival from 0.9 to 8.2 years. We validated 5 well-characterized entities, added further evidence to support 3 previously reported subsets, and described 8 novel groups. The prognostic influence of bone marrow blasts depended on the genetic subtypes. Within genetic subgroups, therapy-related MDS and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) had comparable clinical and outcome profiles to primary MDS. In conclusion, genetically-derived subgroups of MDS are clinically relevant and may inform future classification schemas and translational therapeutic research.

6.
N Engl J Med ; 386(16): 1519-1531, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35443108

ABSTRACT

BACKGROUND: The combination of ivosidenib - an inhibitor of mutant isocitrate dehydrogenase 1 (IDH1) - and azacitidine showed encouraging clinical activity in a phase 1b trial involving patients with newly diagnosed IDH1-mutated acute myeloid leukemia. METHODS: In this phase 3 trial, we randomly assigned patients with newly diagnosed IDH1-mutated acute myeloid leukemia who were ineligible for intensive induction chemotherapy to receive oral ivosidenib (500 mg once daily) and subcutaneous or intravenous azacitidine (75 mg per square meter of body-surface area for 7 days in 28-day cycles) or to receive matched placebo and azacitidine. The primary end point was event-free survival, defined as the time from randomization until treatment failure (i.e., the patient did not have complete remission by week 24), relapse from remission, or death from any cause, whichever occurred first. RESULTS: The intention-to-treat population included 146 patients: 72 in the ivosidenib-and-azacitidine group and 74 in the placebo-and-azacitidine group. At a median follow-up of 12.4 months, event-free survival was significantly longer in the ivosidenib-and-azacitidine group than in the placebo-and-azacitidine group (hazard ratio for treatment failure, relapse from remission, or death, 0.33; 95% confidence interval [CI], 0.16 to 0.69; P = 0.002). The estimated probability that a patient would remain event-free at 12 months was 37% in the ivosidenib-and-azacitidine group and 12% in the placebo-and-azacitidine group. The median overall survival was 24.0 months with ivosidenib and azacitidine and 7.9 months with placebo and azacitidine (hazard ratio for death, 0.44; 95% CI, 0.27 to 0.73; P = 0.001). Common adverse events of grade 3 or higher included febrile neutropenia (28% with ivosidenib and azacitidine and 34% with placebo and azacitidine) and neutropenia (27% and 16%, respectively); the incidence of bleeding events of any grade was 41% and 29%, respectively. The incidence of infection of any grade was 28% with ivosidenib and azacitidine and 49% with placebo and azacitidine. Differentiation syndrome of any grade occurred in 14% of the patients receiving ivosidenib and azacitidine and 8% of those receiving placebo and azacitidine. CONCLUSIONS: Ivosidenib and azacitidine showed significant clinical benefit as compared with placebo and azacitidine in this difficult-to-treat population. Febrile neutropenia and infections were less frequent in the ivosidenib-and-azacitidine group than in the placebo-and-azacitidine group, whereas neutropenia and bleeding were more frequent in the ivosidenib-and-azacitidine group. (Funded by Agios Pharmaceuticals and Servier Pharmaceuticals; AGILE ClinicalTrials.gov number, NCT03173248.).


Subject(s)
Antineoplastic Agents , Azacitidine , Leukemia, Myeloid, Acute , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Azacitidine/administration & dosage , Azacitidine/adverse effects , Azacitidine/therapeutic use , Febrile Neutropenia/chemically induced , Glycine/analogs & derivatives , Humans , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukopenia/chemically induced , Pyridines/administration & dosage , Pyridines/adverse effects , Pyridines/therapeutic use , Recurrence
7.
Blood ; 141(23): 2901-2911, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36940410

ABSTRACT

TP53 mutations (TP53MTs) have been associated with poor outcomes in various hematologic malignancies, but no data exist regarding its role in patients with myelofibrosis undergoing hematopoietic stem cell transplantation (HSCT). Here, we took advantage of a large international multicenter cohort to evaluate the role of TP53MT in this setting. Among 349 included patients, 49 (13%) had detectable TP53MT, of whom 30 showed a multihit configuration. Median variant allele frequency was 20.3%. Cytogenetic risk was favorable (71%), unfavorable (23%), and very high (6%), with complex karyotype present in 36 patients (10%). Median survival of patients with TP53MT was 1.5 vs 13.5 years for those with wild-type TP53 (TP53WT; P < .001). Outcome was driven by multihit TP53MT constellation (P < .001), showing 6-year survival of 56% for individuals with single-hit vs 25% for those with multihit TP53MT vs 64% for those with TP53WT. Outcome was independent of current transplantation-specific risk factors and conditioning intensity. Similarly, cumulative incidence of relapse was 17% for single-hit vs 52% for multihit vs 21% for TP53WT. Ten patients with TP53MT (20%) presented as leukemic transformation vs only 7 (2%) in the TP53WT group (P < .001). Out of the 10 patients with TP53MT, 8 showed multihit constellation. Median time to leukemic transformation was shorter for multihit and single-hit TP53MT (0.7 and 0.5 years, respectively) vs 2.5 years for TP53WT. In summary, multihit TP53MT represents a very high-risk group in patients with myelofibrosis who are undergoing HSCT, whereas single-hit TP53MT alone showed similar outcome to patients with nonmutated TP53, informing prognostication for survival and relapse together with current transplantation-specific tools.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Primary Myelofibrosis , Humans , Primary Myelofibrosis/genetics , Primary Myelofibrosis/therapy , Primary Myelofibrosis/complications , Graft vs Host Disease/etiology , Transplantation, Homologous/adverse effects , Neoplasm Recurrence, Local/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation Conditioning/adverse effects , Chronic Disease , Retrospective Studies , Tumor Suppressor Protein p53/genetics
8.
Blood ; 142(25): 2175-2191, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37756525

ABSTRACT

ABSTRACT: Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.


Subject(s)
DNA-Binding Proteins , Leukemia, Myeloid, Acute , Humans , Mice , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Temozolomide , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , DNA Damage , DNA Repair , Germ Cells/metabolism , DNA , Transcription Factors/genetics
9.
Cytometry A ; 105(3): 181-195, 2024 03.
Article in English | MEDLINE | ID: mdl-37984809

ABSTRACT

Multiparameter flow cytometry (MFC) has emerged as a standard method for quantifying measurable residual disease (MRD) in acute myeloid leukemia. However, the limited number of available channels on conventional flow cytometers requires the division of a diagnostic sample into several tubes, restricting the number of cells and the complexity of immunophenotypes that can be analyzed. Full spectrum flow cytometers overcome this limitation by enabling the simultaneous use of up to 40 fluorescent markers. Here, we used this approach to develop a good laboratory practice-conform single-tube 19-color MRD detection assay that complies with recommendations of the European LeukemiaNet Flow-MRD Working Party. We based our assay on clinically-validated antibody clones and evaluated its performance on an IVD-certified full spectrum flow cytometer. We measured MRD and normal bone marrow samples and compared the MRD data to a widely used reference MRD-MFC panel generating highly concordant results. Using our newly developed single-tube panel, we established reference values in healthy bone marrow for 28 consensus leukemia-associated immunophenotypes and introduced a semi-automated dimensionality-reduction, clustering and cell type identification approach that aids the unbiased detection of aberrant cells. In summary, we provide a comprehensive full spectrum MRD-MFC workflow with the potential for rapid implementation for routine diagnostics due to reduced cell requirements and ease of data analysis with increased reproducibility in comparison to conventional FlowMRD routines.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Flow Cytometry/methods , Reproducibility of Results , Leukemia, Myeloid, Acute/diagnosis , Bone Marrow/metabolism , Neoplasm, Residual/diagnosis
10.
Blood ; 140(17): 1845-1857, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35917453

ABSTRACT

Treatment results for patients with newly diagnosed FMS-like tyrosine kinase 3 (FLT3)-mutated (FLT3mut+) acute myeloid leukemia (AML) ineligible for intensive chemotherapy are disappointing. This multicenter, open-label, phase 3 trial randomized (2:1) untreated adults with FLT3mut+ AML ineligible for intensive induction chemotherapy to receive gilteritinib (120 mg/d orally) and azacitidine (GIL + AZA) or azacitidine (AZA) alone. The primary end point was overall survival (OS). At the interim analysis (August 26, 2020), a total of 123 patients were randomized to treatment (GIL + AZA, n = 74; AZA, n = 49). Subsequent AML therapy, including FLT3 inhibitors, was received by 20.3% (GIL + AZA) and 44.9% (AZA) of patients. Median OS was 9.82 (GIL + AZA) and 8.87 (AZA) months (hazard ratio, 0.916; 95% CI, 0.529-1.585; P = .753). The study was closed based on the protocol-specified boundary for futility. Median event-free survival was 0.03 month in both arms. Event-free survival defined by using composite complete remission (CRc) was 4.53 months for GIL + AZA and 0.03 month for AZA (hazard ratio, 0.686; 95% CI, 0.433-1.087; P = .156). CRc rates were 58.1% (GIL + AZA) and 26.5% (AZA) (difference, 31.4%; 95% CI, 13.1-49.7; P < .001). Adverse event (AE) rates were similar for GIL + AZA (100%) and AZA (95.7%); grade ≥3 AEs were 95.9% and 89.4%, respectively. Common AEs with GIL + AZA included pyrexia (47.9%) and diarrhea (38.4%). Gilteritinib steady-state trough concentrations did not differ between GIL + AZA and gilteritinib. GIL + AZA resulted in significantly higher CRc rates, although similar OS compared with AZA. Results support the safety/tolerability and clinical activity of upfront therapy with GIL + AZA in older/unfit patients with FLT3mut+ AML. This trial was registered at www.clinicaltrials.gov as #NCT02752035.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Adult , Humans , Aged , Azacitidine/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , Pyrazines/adverse effects
11.
Haematologica ; 109(1): 72-83, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37470150

ABSTRACT

Treatment options for relapsed and refractory acute myeloid leukemia patients (R/R AML) are limited. This retrospective cohort study compares safety and efficacy of fludarabine, cytarabine, and idarubicin (FLA-IDA) without or with venetoclax (FLAVIDA) in patients with R/R AML. Thirty-seven and 81 patients received one course FLA-IDA with or without a 7-day course of venetoclax, respectively. The overall response rate (ORR) was significantly higher in FLAVIDA compared to FLAIDA- treated patients (78% vs. 47%; P=0.001), while measurable residual disease was negative at a similar proportion in responding patients (50% vs. 57%), respectively. Eighty-one percent and 79% of patients proceeded to allogeneic hematopoietic cell transplantation or donor lymphocyte infusion after FLAVIDA and FLA-IDA, respectively. Event-free and overall survival were similar in FLAVIDA- and FLA-IDA-treated patients. Refractory patients could be salvaged more successfully after FLA-IDA compared to FLAVIDA pretreatment. Neutrophil and platelet recovery times were similar in the venetoclax and the control group. In conclusion, short-term venetoclax in combination with FLA-IDA represents an effective treatment regimen in R/R AML identifying chemosensitive patients rapidly and inducing measurable residual disease-negative remission in a high proportion of R/R AML patients.


Subject(s)
Idarubicin , Leukemia, Myeloid, Acute , Humans , Idarubicin/therapeutic use , Cytarabine , Retrospective Studies , Granulocyte Colony-Stimulating Factor , Leukemia, Myeloid, Acute/drug therapy , Vidarabine , Antineoplastic Combined Chemotherapy Protocols/adverse effects
12.
Oncology ; 102(4): 327-336, 2024.
Article in English | MEDLINE | ID: mdl-37729894

ABSTRACT

INTRODUCTION: Documentation as well as IT-based management of medical data is of ever-increasing relevance in modern medicine. As radiation oncology is a rather technical, data-driven discipline, standardization, and data exchange are in principle possible. We examined electronic healthcare documents to extract structured information. Planning CT order entry documents were chosen for the analysis, as this covers a common and structured step in radiation oncology, for which standardized documentation may be achieved. The aim was to examine the extent to which relevant information may be exchanged among different institutions. MATERIALS AND METHODS: We contacted representatives of nine radiation oncology departments. Departments using standardized electronic documentation for planning CT were asked to provide templates of their records, which were analyzed in terms of form and content. Structured information was extracted by identifying definite common data elements, containing explicit information. Relevant common data elements were identified and classified. A quantitative analysis was performed to evaluate the possibility of data exchange. RESULTS: We received data of seven documents that were heterogeneous regarding form and content. 181 definite common data elements considered relevant for the planning CT were identified and assorted into five semantic groups. 139 data elements (76.8%) were present in only one document. The other 42 data elements were present in two to six documents, while none was shared among all seven documents. CONCLUSION: Structured and interoperable documentation of medical information can be achieved using common data elements. Our analysis showed that a lot of information recorded with healthcare documents can be presented with this approach. Yet, in the analyzed cohort of planning CT order entries, only a few common data elements were shared among the majority of documents. A common vocabulary and consensus upon relevant information is required to promote interoperability and standardization.


Subject(s)
Common Data Elements , Physicians , Humans , Delivery of Health Care , Documentation , Tomography, X-Ray Computed
13.
Am J Hematol ; 99(5): 844-853, 2024 May.
Article in English | MEDLINE | ID: mdl-38357714

ABSTRACT

Splenomegaly is the clinical hallmark of myelofibrosis. Splenomegaly at the time of allogeneic hematopoietic cell transplantation (HCT) is associated with graft failure and poor graft function. Strategies to reduce spleen size before HCT especially after failure to Janus kinase (JAK) inhibition represent unmet clinical needs in the field. Here, we leveraged a global collaboration to investigate the safety and efficacy of splenic irradiation as part of the HCT platform for patients with myelofibrosis. We included 59 patients, receiving irradiation within a median of 2 weeks (range, 0.9-12 weeks) before HCT. Overall, the median spleen size prior to irradiation was 23 cm (range, 14-35). Splenic irradiation resulted in a significant and rapid spleen size reduction in 97% of patients (57/59), with a median decrease of 5.0 cm (95% confidence interval, 4.1-6.3 cm). The most frequent adverse event was thrombocytopenia, with no correlation between irradiation dose and hematological toxicities. The 3-year overall survival was 62% (95% CI, 48%-76%) and 1-year non-relapse mortality was 26% (95% CI, 14%-38%). Independent predictors for survival were severe thrombocytopenia and anemia before irradiation, transplant-specific risk score, higher-intensity conditioning, and present portal vein thrombosis. When using a propensity score matching adjusted for common confounders, splenic irradiation was associated with significantly reduced relapse (p = .01), showing a 3-year incidence of 12% for splenic irradiation versus 29% for patients with immediate HCT and 38% for patients receiving splenectomy. In conclusion, splenic irradiation immediately before HCT is a reasonable approach in patients experiencing JAK inhibition failure and is associated with a low incidence of relapse.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Primary Myelofibrosis , Thrombocytopenia , Humans , Spleen , Splenomegaly/etiology , Splenomegaly/radiotherapy , Primary Myelofibrosis/radiotherapy , Primary Myelofibrosis/complications , Hematopoietic Stem Cell Transplantation/methods , Thrombocytopenia/complications , Recurrence , Transplantation Conditioning/methods , Graft vs Host Disease/etiology
14.
Mol Cancer ; 22(1): 196, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049829

ABSTRACT

Pharmacologic targeting of chromatin-associated protein complexes has shown significant responses in KMT2A-rearranged (KMT2A-r) acute myeloid leukemia (AML) but resistance frequently develops to single agents. This points to a need for therapeutic combinations that target multiple mechanisms. To enhance our understanding of functional dependencies in KMT2A-r AML, we have used a proteomic approach to identify the catalytic immunoproteasome subunit PSMB8 as a specific vulnerability. Genetic and pharmacologic inactivation of PSMB8 results in impaired proliferation of murine and human leukemic cells while normal hematopoietic cells remain unaffected. Disruption of immunoproteasome function drives an increase in transcription factor BASP1 which in turn represses KMT2A-fusion protein target genes. Pharmacologic targeting of PSMB8 improves efficacy of Menin-inhibitors, synergistically reduces leukemia in human xenografts and shows preserved activity against Menin-inhibitor resistance mutations. This identifies and validates a cell-intrinsic mechanism whereby selective disruption of proteostasis results in altered transcription factor abundance and repression of oncogene-specific transcriptional networks. These data demonstrate that the immunoproteasome is a relevant therapeutic target in AML and that targeting the immunoproteasome in combination with Menin-inhibition could be a novel approach for treatment of KMT2A-r AML.


Subject(s)
Leukemia, Myeloid, Acute , Proteomics , Humans , Mice , Animals , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Leukemia, Myeloid, Acute/metabolism , Transcription Factors/genetics , Mutation , Gene Expression
15.
Blood ; 137(19): 2657-2661, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33512436

ABSTRACT

Adult patients with relapsed B-cell precursor acute lymphoblastic leukemia (BCP-ALL) have a dismal prognosis. To improve pharmacotherapy, we analyzed induction of apoptosis by venetoclax and inotuzumab ozogamicin in terms of cytotoxicity and mode of action. Flow cytometry-based analyses of mitochondrial outer membrane permeabilization (MOMP) and ataxia telangiectasia mutated activation demonstrate rapid induction of MOMP by venetoclax and DNA damage signaling by inotuzumab ozogamicin, respectively. In primary ALL samples and patient-derived xenograft (PDX) models, venetoclax and inotuzumab ozogamicin cooperated and synergized in combination with dexamethasone in vitro in all tested samples of ALL. In murine PDX models, inotuzumab ozogamicin, but not venetoclax, induced complete remission in a dose-dependent manner but constantly failed to achieve relapse-free survival. In contrast, combination therapy with venetoclax, dexamethasone, and inotuzumab ozogamicin induced long-term leukemia-free survival and treatment-free survival in all 3 ALL-PDX models tested. These data demonstrate synergistic and highly efficient pharmacotherapy in preclinical models that qualify for evaluation in clinical trials.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , DNA Damage , DNA, Neoplasm/drug effects , Dexamethasone/pharmacology , Inotuzumab Ozogamicin/pharmacology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Sulfonamides/pharmacology , Adolescent , Adult , Aged , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Calicheamicins/pharmacology , DNA Breaks, Double-Stranded , Dexamethasone/administration & dosage , Drug Synergism , Female , Humans , Inotuzumab Ozogamicin/administration & dosage , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Mitochondrial Membranes/drug effects , Recurrence , Sulfonamides/administration & dosage , Xenograft Model Antitumor Assays
16.
Blood ; 137(22): 3093-3104, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33598693

ABSTRACT

In the international randomized phase 3 RATIFY (Randomized AML Trial In FLT3 in patients less than 60 Years old) trial, the multikinase inhibitor midostaurin significantly improved overall and event-free survival in patients 18 to 59 years of age with FLT3-mutated acute myeloid leukemia (AML). However, only 59% of patients in the midostaurin arm achieved protocol-specified complete remission (CR), and almost half of patients achieving CR relapsed. To explore underlying mechanisms of resistance, we studied patterns of clonal evolution in patients with FLT3-internal tandem duplications (ITD)-positive AML who were entered in the RATIFY or German-Austrian Acute Myeloid Leukemia Study Group 16-10 trial and received treatment with midostaurin. To this end, paired samples from 54 patients obtained at time of diagnosis and at time of either relapsed or refractory disease were analyzed using conventional Genescan-based testing for FLT3-ITD and whole exome sequencing. At the time of disease resistance or progression, almost half of the patients (46%) became FLT3-ITD negative but acquired mutations in signaling pathways (eg, MAPK), thereby providing a new proliferative advantage. In cases with FLT3-ITD persistence, the selection of resistant ITD clones was found in 11% as potential drivers of disease. In 32% of cases, no FLT3-ITD mutational change was observed, suggesting either resistance mechanisms bypassing FLT3 inhibition or loss of midostaurin inhibitory activity because of inadequate drug levels. In summary, our study provides novel insights into the clonal evolution and resistance mechanisms of FLT3-ITD-mutated AML under treatment with midostaurin in combination with intensive chemotherapy.


Subject(s)
Clonal Evolution/drug effects , Leukemia, Myeloid, Acute , Mutation , Staurosporine/analogs & derivatives , fms-Like Tyrosine Kinase 3 , Adolescent , Adult , Aged , Clonal Evolution/genetics , Female , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Male , Middle Aged , Staurosporine/administration & dosage , Tandem Repeat Sequences , Exome Sequencing , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
17.
Blood ; 138(26): 2753-2767, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34724563

ABSTRACT

Measurable residual disease (MRD) is an important biomarker in acute myeloid leukemia (AML) that is used for prognostic, predictive, monitoring, and efficacy-response assessments. The European LeukemiaNet (ELN) MRD Working Party evaluated standardization and harmonization of MRD in an ongoing manner and has updated the 2018 ELN MRD recommendations based on significant developments in the field. New and revised recommendations were established during in-person and online meetings, and a 2-stage Delphi poll was conducted to optimize consensus. All recommendations are graded by levels of evidence and agreement. Major changes include technical specifications for next-generation sequencing-based MRD testing and integrative assessments of MRD irrespective of technology. Other topics include use of MRD as a prognostic and surrogate end point for drug testing; selection of the technique, material, and appropriate time points for MRD assessment; and clinical implications of MRD assessment. In addition to technical recommendations for flow- and molecular-MRD analysis, we provide MRD thresholds and define MRD response, and detail how MRD results should be reported and combined if several techniques are used. MRD assessment in AML is complex and clinically relevant, and standardized approaches to application, interpretation, technical conduct, and reporting are of critical importance.


Subject(s)
Leukemia, Myeloid, Acute/diagnosis , Neoplasm, Residual/diagnosis , Europe , Flow Cytometry/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Leukemia, Myeloid, Acute/genetics , Neoplasm, Residual/genetics , Prognosis
18.
Ann Hematol ; 102(2): 323-328, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36576532

ABSTRACT

Relapse in patients with acute myeloid leukemia (AML) is common and is associated with a dismal prognosis. Treatment options are limited and the understanding of molecular response patterns is still challenging. We analyzed the clonal response patterns of 15 patients with relapsed/refractory AML treated with selinexor in a phase II trial (SAIL). DNA was analyzed at three time points and showed a decline of mutated alleles in FLT3, SF3B1, and TP53 under SAIL treatment. Overall survival (OS) was similar between patients with declining versus persisting clones. We show an interesting long-term course of a patient who relapsed after allogeneic stem cell transplantation (alloHCT) with SF3B1- and SRSF2-mutated AML and received selinexor as maintenance treatment for 4 years. Measurable residual disease (MRD) remained detectable for 2 weeks after donor lymphocyte infusion (DLI) in this patient and then remained negative under selinexor maintenance treatment. Selinexor was tolerated well and was stopped after 4 years of SAIL treatment. We present an exploratory study and identify subclonal patterns of patients treated with selinexor.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Prognosis , Recurrence
19.
Am J Hematol ; 98(12): 1847-1855, 2023 12.
Article in English | MEDLINE | ID: mdl-37671649

ABSTRACT

With the availability of effective targeted agents, significant changes have occurred in the management of patients with acute myeloid leukemia (AML) over the past several years, particularly for those considered unfit for intensive chemotherapy. While testing for measurable residual disease (MRD) is now routinely performed in patients treated with intensive chemotherapy to refine prognosis and, possibly, inform treatment decision-making, its value in the context of lower-intensity regimens is unclear. As such regimens have gained in popularity and can be associated with higher response rates, the need to better define the role of MRD assessment and the appropriate time points and assays used for this purpose has increased. This report outlines a roadmap for MRD testing in patients with AML treated with lower-intensity regimens. Experts from the European LeukemiaNet (ELN)-DAVID AML MRD working group reviewed all available data to propose a framework for MRD testing in future trials and clinical practice. A Delphi poll served to optimize consensus. Establishment of uniform standards for MRD assessments in lower-intensity regimens used in treating patients with AML is clinically relevant and important for optimizing testing and, ultimately, improving treatment outcomes of these patients.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Prognosis , Treatment Outcome , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Neoplasm, Residual/diagnosis
20.
Future Oncol ; 19(11): 789-810, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37170899

ABSTRACT

Aim: To review clinical evidence for current and emerging treatments for patients with acute myeloid leukemia (AML) who are ineligible for first-line induction chemotherapy. Methods: A systematic literature review was performed (28 October 2021) to identify clinical outcomes including overall survival (OS), event-free survival (EFS), relapse-free survival (RFS) and adverse events (AEs). Results: Of 233 references that met prespecified criteria, 26 studies were included. Adding targeted therapies (venetoclax/ivosidenib) to hypomethylating agents (HMAs) yielded better OS hazard ratios (HRs) (0.44-0.66) and EFS HRs (0.33-0.63) compared with other agents. AEs were more frequent with combination therapies than control arms, except with ivosidenib plus azacitidine. Conclusion: Targeted therapy combined with a HMA shows the most promising results in this difficult-to-treat population.


Acute myeloid leukemia (AML) is a type of cancer of the bone marrow and blood that leads to overproduction of immature white blood cells. High-dose (intensive) chemotherapy is usually the first treatment option for AML. However, more than half of people newly diagnosed with AML cannot receive the recommended initial intensive chemotherapy due to older age or poor health. Treatment with low-dose cytarabine (LDAC) and hypomethylating agents (HMAs), such as azacitidine, is key for such people. We reviewed 26 clinical trials looking into available and developing treatment options for people who cannot have the recommended initial chemotherapy. The review found evidence that combining LDAC or HMA with a targeted therapy can improve survival. In AML, new therapies (such as ivosidenib, venetoclax and glasdegib) 'target' specific changes in the genes of cancer cells to slow or stop their division and growth. The greatest improvement in survival was seen in clinical trials where targeted therapies were added to azacitidine or LDAC. Targeted therapies may result in certain side effects that require regular monitoring. To provide patients with the benefits of targeted therapies they need to undergo genetic testing at the time of diagnosis. Tests to determine an individual's specific gene changes allows clinicians to develop personalised treatment plans with available targeted therapies. This shows promise in improving survival for people with AML who cannot receive initial intensive chemotherapy.


Subject(s)
Cytarabine , Leukemia, Myeloid, Acute , Humans , Azacitidine/adverse effects , Combined Modality Therapy , Progression-Free Survival , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Induction Chemotherapy
SELECTION OF CITATIONS
SEARCH DETAIL