ABSTRACT
High-count microelectrode arrays implanted in peripheral nerves could restore motor function after spinal cord injury or sensory function after limb loss. In this study, we implanted Utah Slanted Electrode Arrays (USEAs) intrafascicularly at the elbow or shoulder in arm nerves of rhesus monkeys (n = 4) under isoflurane anesthesia. Input-output curves indicated that pulse-width-modulated single-electrode stimulation in each arm nerve could recruit single muscles with little or no recruitment of other muscles. Stimulus trains evoked specific, natural, hand movements, which could be combined via multielectrode stimulation to elicit coordinated power or pinch grasp. Stimulation also elicited short-latency evoked potentials (EPs) in primary somatosensory cortex, which might be used to provide sensory feedback from a prosthetic limb. These results demonstrate a high-resolution, high-channel-count interface to the peripheral nervous system for restoring hand function after neural injury or disruption or for examining nerve structure.
Subject(s)
Evoked Potentials, Somatosensory , Hand Strength , Peripheral Nerves/physiology , Animals , Arm/innervation , Electric Stimulation , Evoked Potentials, Motor , Fascia , Feedback, Sensory , Haplorhini , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Somatosensory Cortex/physiologyABSTRACT
The muscles of the hamstring group can produce different combinations of hip and knee torque. Thus, the ability to activate the different hamstring muscles selectively is of particular importance in eliciting functional movements such as stance and gait in a person with spinal cord injury. We investigated the ability of intrafascicular stimulation of the muscular branch of the sciatic nerve to recruit the feline hamstring muscles in a selective and graded fashion. A Utah Slanted Electrode Array, consisting of 100 penetrating microelectrodes, was implanted into the muscular branch of the sciatic nerve in six cats. Muscle twitches were evoked in the three compartments of biceps femoris (anterior, middle, and posterior), as well as semitendinosus and semimembranosus, using pulse-width modulated constant-voltage pulses. The resultant compound muscle action potentials were recorded using intramuscular fine-wire electrodes. 74% of the electrodes per implant were able to evoke a threshold response in these muscles, and these electrodes were evenly distributed among the instrumented muscles. Of the five muscles instrumented, on average 2.5 could be selectively activated to 90% of maximum EMG, and 3.5 could be selectively activated to 50% of maximum EMG. The muscles were recruited selectively with a mean stimulus dynamic range of 4.14 +/- 5.05 dB between threshold and either spillover to another muscle or a plateau in the response. This selective and graded activation afforded by intrafascicular stimulation of the muscular branch of the sciatic nerve suggests that it is a potentially useful stimulation paradigm for eliciting distinct forces in the hamstring muscle group in motor neuroprosthetic applications.
Subject(s)
Electric Stimulation/methods , Hindlimb/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Recruitment, Neurophysiological/physiology , Sciatic Nerve/physiology , Animals , Cats , Hindlimb/innervation , Muscle, Skeletal/innervationABSTRACT
Over the past decade, research in the field of functional electrical stimulation (FES) has led to a new generation of high-electrode-count (HEC) devices that offer increasingly selective access to neural populations. Incorporation of these devices into research and clinical applications, however, has been hampered by the lack of hardware and software platforms capable of taking full advantage of them. In this paper, we present the first generation of a closed-loop FES platform built specifically for HEC neural interface devices. The platform was designed to support a wide range of stimulus-response mapping and feedback-based control routines. It includes a central control module, a 1100-channel stimulator, an array of biometric devices, and a 160-channel data recording module. To demonstrate the unique capabilities of this platform, two automated software routines for mapping stimulus-response properties of implanted HEC devices were implemented and tested. The first routine determines stimulation levels that produce perithreshold muscle activity, and the second generates recruitment curves (as measured by peak impulse response). Both routines were tested on 100-electrode Utah Slanted Electrode Arrays (USEAs) implanted in cat hindlimb nerves using joint torque or emg as muscle output metric. Mean time to map perithreshold stimulus level was 16.4 s for electrodes that evoked responses (n = 3200), and 3.6 s for electrodes that did not evoke responses (n = 1800). Mean time to locate recruitment curve asymptote for an electrode (n = 155) was 9.6 s , and each point in the recruitment curve required 0.87 s. These results demonstrate the utility of our FES platform by showing that it can be used to completely automate a typically time- and effort-intensive procedure associated with using HEC devices.