Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Artif Organs ; 46(1): 71-82, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34287976

ABSTRACT

The objective of this study is to identify the preload and afterload sensitivity of the ReinHeart TAH 2.0. For adequate left-right flow balance, the concept of a reduced right stroke volume (by about 10%) and active adaption of the right diastole duration are evaluated concerning the controllability of the flow balance. This study used an active mock circulation loop to test a wide range of preload and afterload conditions. Preload sensitivity was tested at atrial pressures (APs) between 4 and 20 mm Hg. Left afterload was varied in a range of 60-140 mm Hg mean aortic pressure (MAP), right afterload was simulated between 15 and 40 mm Hg. Four scenarios were developed to verify that the flow difference fully covers the defined target range of 0-1.5 L/min. Although a positive correlation between inlet pressure and flow is identified for the right pump chamber, the left pump chamber already fills completely at an inlet pressure of 8-10 mm Hg. With increasing afterload, both the left and right flow decrease. A positive flow balance (left flow exceeds right flow) is achieved over the full range of tested afterloads. At high APs, the flow difference is limited to a maximum of 0.7 L/min. The controllability of flow balance was successfully evaluated in four scenarios, revealing that a positive flow difference can be achieved over the full range of MAPs. Under physiological test conditions, the linear relationship between flow and heart rate was confirmed, ensuring good controllability of the TAH.


Subject(s)
Blood Circulation , Heart, Artificial , Prosthesis Design , Blood Pressure , Heart Rate , Hydrodynamics , Models, Cardiovascular
2.
J Artif Organs ; 25(1): 1-8, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33956261

ABSTRACT

An in-vitro study was conducted to investigate the general feasibility of using only one pumping chamber of the SynCardia total artificial heart (TAH) as a replacement of the single ventricle palliated by Fontan circulation. A mock circulation loop was used to mimic a Fontan circulation. The combination of both ventricle sizes (50 and 70 cc) and driver (Freedom Driver and Companion C2 Driver) was investigated. Two clinical relevant scenarios (early Fontan; late Fontan) as derived from literature data were set up in the mock loop. The impact of increased transpulmonary pressure gradient, low atrial pressure, and raised central venous pressure on cardiac output was studied. From a hemodynamic point, the single-chambered TAH performed sufficiently in the setting of the Fontan circulation. Increased transpulmonary pressure gradient, from ideal to pulmonary hypertension, decreased the blood flow in combinations by almost 2 L/min. In the early Fontan scenario, a cardiac output of 3-3.5 L/min was achieved using the 50 cc ventricle, driven by the Companion C2 Driver. Even under pulmonary hypertension, cardiac outputs greater than 4 L/min could be obtained with the 70 cc pump chamber in the late Fontan scenario. In the clinically relevant Fontan scenarios, implementation of the single chambered TAH performed successfully from a hemodynamic point of view. The replacement of the failing univentricular heart by a single chamber of the SynCardia TAH may provide an alternative to a complex biventricular repair procedure or ventricular support in Fontan patients.


Subject(s)
Fontan Procedure , Heart Defects, Congenital , Heart, Artificial , Cardiac Output , Fontan Procedure/methods , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/surgery , Heart Ventricles/surgery , Hemodynamics/physiology , Humans
3.
Artif Organs ; 45(4): 364-372, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33001469

ABSTRACT

A total artificial heart (TAH) must be designed to autonomously balance the flows of the systemic and pulmonary circulation to prevent potentially lethal lung damage. The flow difference between the systemic and pulmonary circulation is mainly caused by the bronchial (arteries) shunt flow and can change dynamically. The ReinHeart TAH consists of only one actuator that ejects blood alternately from the right and left pump chamber. This design entails a coupling of the right and left stroke and thus, complicates the independent adaptation of the right and left flow. In this experimental study on the ReinHeart TAH, four concepts to keep the flows well balanced were investigated using an active mock circulation loop for data acquisition. Three concepts are based on mechanical design changes (variation of pusher plate shape, flexible right pump chamber housing, and reduced right stroke volume) to achieve a static flow difference. In combination with these static concepts, a concept influencing the ratio of systole and diastole duration to respond to dynamic changes was studied. In total, four measurement series, each with 270 operating points, to investigate the influence of circulatory filling volume, heart rate, bronchial shunt flow, and lung resistance were recorded. In the course of this study, we introduce a concept deviation indicator, providing information about the efficiency of the concepts to balance the flows based on changes in lung's blood pressures. Furthermore, the distribution of the measured data was evaluated based on bubble plot visualizations. The investigated variation of the right pusher plate shape results in high lung pressures which will cause lethal lung damage. In comparison, a flexible right pump chamber housing shows lower lung pressures, but it still has the potential to damage the lungs. Reducing the stroke volume of the right pump chamber results in proper lung pressures. The flow balance can dynamically be influenced with a positive effect on the lung pressures by choosing a suitable systole-diastole-ratio. The results of this study suggest that an adequate right-left flow balance can be achieved by combining the mechanical concept of a reduced right stroke volume with an active control of the systole-diastole-ratio.


Subject(s)
Heart, Artificial , Models, Cardiovascular , Prosthesis Design , Pulmonary Circulation/physiology , Blood Pressure/physiology , Bronchial Arteries/physiology , Diastole/physiology , Heart Rate/physiology , Humans , Stroke Volume/physiology , Systole/physiology
4.
ASAIO J ; 68(1): 34-40, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33769348

ABSTRACT

A downsized version of the ReinHeart total artificial heart (TAH) was developed. Hemocompatibility needs to be revised since the operating point of the downsized TAH has changed to a higher pump frequency to accomplish the same cardiac output. A mock circulation loop was designed, containing a left side for hemocompatibility testing and a right side to mimic realistic work conditions. A protocol for hemolysis testing was established using pooled porcine blood with an operation point of 5 L/min, a mean outlet pressure of 100 mm Hg and a mean inlet pressure of 12 mm Hg. Six trials were performed testing two downsized TAH (one with a compliance chamber [CC] connected, necessary for a pneumatic decoupling of both membranes and one open to atmosphere) and a BPX-80 as reference pump. The average modified index of hemolysis and normalized index of hemolysis (NIH in mg/100L) from six individual trials of the reference pump were 0.34 (0.07) and 3.21 (0.61) and of the TAH open to atmosphere 4.18 (1.19) and 38.85 (10.59), respectively. In between TAH with and without CC, there was no significant difference. A NIH ratio of TAH and reference pump was calculated to minimize variation of the different blood batches used in individual trials. Due to the downsizing, the ReinHeart's hemolysis level increased by around 22% compared with the original size version. Comparing the results to clinically approved left ventricular assist devices, the level of hemolysis can still be considered acceptable.


Subject(s)
Heart, Artificial , Heart-Assist Devices , Animals , Cardiac Output , Heart, Artificial/adverse effects , Heart-Assist Devices/adverse effects , Hemolysis , Prosthesis Design , Swine
5.
ChemSusChem ; 9(13): 1704-11, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27239982

ABSTRACT

To identify alternative single-solvent-based electrolytes for application in lithium-ion batteries (LIBs), adequate computational methods were applied to screen specified physicochemical and electrochemical properties of new cyanoester-based compounds. Out of 2747 possible target compounds, two promising candidates and two structurally equivalent components were chosen. A constructive selection process including evaluation of basic physicochemical properties as well assessing the compatibility towards graphitic anodes was initiated to identify the most promising candidates. With addition of a film-forming additive in a low concentration, the most promising candidate showed an adequate long-term cycling stability with LiNi1/3 Mn1/3 Co1/3 O2 [NMC(111)] in a full-cell setup using graphite as anode material. The main advantages of the new electrolyte formulation are related to its good thermal behavior, especially with regard to safety in combination with satisfying electrochemical performance.


Subject(s)
Electric Power Supplies , Esters/chemistry , Lithium/chemistry , Nitriles/chemistry , Safety , Solvents/chemistry , Chemical Phenomena , Electric Conductivity
SELECTION OF CITATIONS
SEARCH DETAIL