Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Phys Chem Chem Phys ; 26(17): 13271-13278, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635261

ABSTRACT

Composition dependent tuning of electronic and optical properties in semiconducting two-dimensional (2D) transition metal dichalcogenide (TMDC) alloys is promising for tailoring the materials for optoelectronics. Here, we report a solution-based synthesis suitable to obtain predominantly monolayered 2D semiconducting Mo1-xWxS2 nanosheets (NSs) with controlled composition as substrate-free colloidal inks. Atomic-level structural analysis by high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectroscopy (EDXS) depicts the distribution of individual atoms within the Mo1-xWxS2 NSs and reveals the tendency for domain formation, especially at low molar tungsten fractions. These domains cause a broadening in the associated ensemble-level Raman spectra, confirming the extrapolation of the structural information from the microscopic scale to the properties of the entire sample. A characterization of the Mo1-xWxS2 NSs by steady-state optical spectroscopy shows that a band gap tuning in the range of 1.89-2.02 eV (614-655 nm) and a spin-orbit coupling-related exciton splitting of 0.16-0.38 eV can be achieved, which renders colloidal methods viable for upscaling low cost synthetic approaches toward application-taylored colloidal TMDCs.

2.
Small ; 19(23): e2207101, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36892154

ABSTRACT

The electronic structure of mono and bilayers of colloidal 2H-MoS2 nanosheets synthesized by wet-chemistry using potential-modulated absorption spectroscopy (EMAS), differential pulse voltammetry, and electrochemical gating measurements is investigated. The energetic positions of the conduction and valence band edges of the direct and indirect bandgap are reported and observe strong bandgap renormalization effects, charge screening of the exciton, as well as intrinsic n-doping of the as-synthesized material. Two distinct transitions in the spectral regime associated with the C exciton are found, which overlap into a broad signal upon filling the conduction band. In contrast to oxidation, the reduction of the nanosheets is largely reversible, enabling potential applications for reductive electrocatalysis. This work demonstrates that EMAS is a highly sensitive tool for determining the electronic structure of thin films with a few nanometer thicknesses and that colloidal chemistry affords high-quality transition metal dichalcogenide nanosheets with an electronic structure comparable to that of exfoliated samples.

3.
Diabet Med ; 39(6): e14787, 2022 06.
Article in English | MEDLINE | ID: mdl-35007358

ABSTRACT

AIMS: Cold atmospheric plasma (CAP) has been proven to enhance wound healing in superficial, chronically infected, diabetic foot ulcers. We aimed to investigate the molecular drivers responsible for this macroscopically observed improvement in diabetic wound healing. METHODS: Wound exudate was available from each change of dressing within a prospective, randomised, patient-blinded clinical trial. Specific protein level analyses were conducted via multiplex ELISA for wound samples of a representative subcohort (placebo: n = 13; CAP: n = 14). Expression of fibroblast growth factor 2 (FGF-2), vascular endothelial growth factor A (VEGF-A), cytokines and matrix metalloproteinases (MMPs) were evaluated over a treatment period of about 14 days. RESULTS: Analysis revealed increased levels of the growth factors FGF-2 (placebo: median 46.9 range [32.0-168.6] AU vs. CAP: 113.7[55.8-208.1] AU) and VEGF-A (placebo: 79.7 [52.4-162.7] AU vs. CAP: 120.8 [51.1-198.1] AU) throughout the treatment period and in head-to-head comparison in a daily assessment. CAP-treated wounds showed increased levels of tumour necrosis factor-alpha, interleukins 1α and 8. However, the total protein amounts were not significantly elevated. The total protein amounts of MMPs were not altered by CAP. CONCLUSIONS: Induction of crucial growth factors, like FGF-2 and VEGF-A, and interleukins appears to be an important component of CAP-mediated promotion of granulation, vascularisation and reepithelialisation in the diabetic foot. These findings demonstrate for the first time that CAP-mediated growth factor induction also occurs in persons with diabetes, as previously described only in several in vitro and rodent experiments. Clinical Trial registration KPWTRIAL: NCT04205942, ClinicalTrials.gov.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Plasma Gases , Diabetes Mellitus/drug therapy , Diabetic Foot/pathology , Fibroblast Growth Factor 2/therapeutic use , Humans , Plasma Gases/pharmacology , Plasma Gases/therapeutic use , Prospective Studies , Vascular Endothelial Growth Factor A
4.
J Chem Phys ; 151(14): 141102, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615264

ABSTRACT

CdSe quantum dots are functionalized with the organic dye iron ß-tetraaminophthalocyanine to reward a solution-processable hybrid material with two individually addressable optical resonances. We exploit this dual functionality during optical write/optical read patterning experiments and show that it is possible to simultaneously write complex optical patterns with positive and negative fluorescence contrast. This is enabled by a fluorescence enhancement under near-resonant excitation of the quantum dots in combination with a fluorescence bleaching during excitation of the singlet transition of the phthalocyanine. The presence of the organic dye not only enables negative optical patterning but also enhances the contrast during positive patterning. Furthermore, the patterning result is strongly dependent on the excitation wavelength during readout. Our results highlight the new possibilities that arise from combining inorganic quantum dots and organic π-systems into hybrid nanocomposites.

5.
Nat Commun ; 13(1): 892, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35173165

ABSTRACT

We correlate spatially resolved fluorescence (-lifetime) measurements with X-ray nanodiffraction to reveal surface defects in supercrystals of self-assembled cesium lead halide perovskite nanocrystals and study their effect on the fluorescence properties. Upon comparison with density functional modeling, we show that a loss in structural coherence, an increasing atomic misalignment between adjacent nanocrystals, and growing compressive strain near the surface of the supercrystal are responsible for the observed fluorescence blueshift and decreased fluorescence lifetimes. Such surface defect-related optical properties extend the frequently assumed analogy between atoms and nanocrystals as so-called quasi-atoms. Our results emphasize the importance of minimizing strain during the self-assembly of perovskite nanocrystals into supercrystals for lighting application such as superfluorescent emitters.

6.
ACS Nano ; 15(1): 480-488, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33438432

ABSTRACT

CdSe nanocrystals and aggregates of an aryleneethynylene derivative are assembled into a hybrid thin film with dual fluorescence from both fluorophores. Under continuous excitation, the nanocrystals and the molecules exhibit anticorrelated fluorescence intensity variations, which become periodic at low temperature. We attribute this to a structure-dependent aggregation-induced emission of the aryleneethynylene derivative, which impacts the rate of excitation energy transfer between the molecules and nanocrystals. This work highlights that combining semiconductor nanocrystals with molecular aggregates, which exhibit aggregation-induced emission, can result in emerging optical properties.

7.
JAMA Netw Open ; 3(7): e2010411, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32672829

ABSTRACT

Importance: Diabetic foot ulcers are a common complication of diabetes and require specialized treatment. Cold atmospheric plasma (CAP) has been associated with benefits in wound infection and healing in previous smaller series of case reports. Yet the effect of CAP compared with standard care therapy in wound healing in diabetic foot ulcers remains to be studied. Objective: To determine whether the application of CAP accelerates wound healing in diabetic foot ulcers compared with standard care therapy. Design, Setting, and Participants: A prospective, randomized, placebo-controlled, patient-blinded clinical trial was conducted at 2 clinics with recruitment from August 17, 2016, to April 20, 2019. Patients were scheduled to remain in follow-up until April 30, 2024. Patients with diabetes and diabetic foot ulcers described using the combined Wagner-Armstrong classification of 1B or 2B (superficial or infected diabetic foot ulcers extending to tendon) were eligible. A patient could participate with 1 or more wounds in both groups in both intervention and control groups. Wounds were randomized separately, allowing a participant to be treated several times within the study following a 2 × 2 × 2 randomization strata considering sex, smoking status, and age (≤68 years and >68 years). Interventions: Standard care treatment with 8 applications of either CAP generated from argon gas in an atmospheric pressure plasma jet or 8 applications of placebo treatment in a patient-blinded manner. Main Outcomes and Measures: Primary end points were reduction in wound size, clinical infection, and microbial load compared with treatment start. Secondary end points were time to relevant wound reduction (>10%), reduction of infection, parameters of patient's well-being, and treatment-associated adverse events. Results: Of 65 diabetic foot ulcer wounds from 45 patients assessed for study, 33 wounds from 29 patients were randomized to CAP and 32 wounds from 28 to placebo, with 62 wounds from 43 patients (31 wounds per group) included for final evaluation (mean [SD] age, 68.5 [9.1] years for full sample). Four patients with 5 wounds of 31 (16.1%) wounds in the CAP group and 3 patients with 4 wounds of 31 (13%) wounds in the placebo group were active smokers. CAP therapy yielded a significant increase in wound healing, both in total mean (SD) area reduction (CAP vs placebo relative units, -26.31 [11.72]; P = .03) and mean (SD) time to relevant wound area reduction (CAP vs placebo relative units, 10% from baseline, 1.60 [0.58]; P = .009). Reduction of infection and microbial load was not significantly different between CAP and placebo. No therapy-related adverse events occurred during therapy; patient's perceptions during therapy were comparable. Conclusions and Relevance: In this randomized clinical trial, CAP therapy resulted in beneficial effects in chronic wound treatment in terms of wound surface reduction and time to wound closure independent from background infection. Trial Registration: ClinicalTrials.gov Identifier: NCT04205942.


Subject(s)
Diabetic Foot/therapy , Plasma Gases/therapeutic use , Wound Healing , Aged , Female , Humans , Male
8.
ACS Appl Mater Interfaces ; 11(51): 48271-48280, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31778068

ABSTRACT

We report an optically gated transistor composed of CdSe nanocrystals (NCs), sensitized with the dye zinc ß-tetraaminophthalocyanine for operation in the first telecom window. This device shows a high ON/OFF ratio of 6 orders of magnitude in the red spectral region and an unprecedented 4.5 orders of magnitude at 847 nm. By transient absorption spectroscopy, we reveal that this unexpected infrared sensitivity is due to electron transfer from the dye to the CdSe NCs within 5 ps. We show by time-resolved photocurrent measurements that this enables fast rise times during near-infrared optical gating of 47 ± 11 ns. Electronic coupling and accelerated nonradiative recombination of charge carriers at the interface between the dye and the CdSe NCs are further corroborated by steady-state and time-resolved photoluminescence measurements. Field-effect transistor measurements indicate that the increase in photocurrent upon laser illumination is mainly due to the increase in the carrier concentration while the mobility remains unchanged. Our results illustrate that organic dyes as ligands for NCs invoke new optoelectronic functionalities, such as fast optical gating at sub-bandgap optical excitation energies.

SELECTION OF CITATIONS
SEARCH DETAIL