Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hematol ; 99(1): 99-112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37929634

ABSTRACT

Human erythropoiesis is a complex process leading to the production of 2.5 million red blood cells per second. Following commitment of hematopoietic stem cells to the erythroid lineage, this process can be divided into three distinct stages: erythroid progenitor differentiation, terminal erythropoiesis, and reticulocyte maturation. We recently resolved the heterogeneity of erythroid progenitors into four different subpopulations termed EP1-EP4. Here, we characterized the growth factor(s) responsiveness of these four progenitor populations in terms of proliferation and differentiation. Using mass spectrometry-based proteomics on sorted erythroid progenitors, we quantified the absolute expression of ~5500 proteins from EP1 to EP4. Further functional analyses highlighted dynamic changes in cell cycle in these populations with an acceleration of the cell cycle during erythroid progenitor differentiation. The finding that E2F4 expression was increased from EP1 to EP4 is consistent with the noted changes in cell cycle. Finally, our proteomic data suggest that the protein machinery necessary for both oxidative phosphorylation and glycolysis is present in these progenitor cells. Together, our data provide comprehensive insights into growth factor-dependence of erythroid progenitor proliferation and the proteome of four distinct populations of human erythroid progenitors which will be a useful framework for the study of erythroid disorders.


Subject(s)
Hematopoietic Stem Cells , Proteomics , Humans , Cell Differentiation , Cell Cycle , Erythropoiesis , Metabolic Networks and Pathways , Intercellular Signaling Peptides and Proteins/metabolism , Erythroid Precursor Cells
2.
Blood ; 138(17): 1615-1627, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34036344

ABSTRACT

Histone deacetylases (HDACs) are a group of enzymes that catalyze the removal of acetyl groups from histone and nonhistone proteins. HDACs have been shown to have diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. This study showed that, of the 11 classic HDAC family members, 6 (HDAC1, -2, -3, and HDAC5, -6, -7) are expressed in human erythroid cells, with HDAC5 most significantly upregulated during terminal erythroid differentiation. Knockdown of HDAC5 by either short hairpin RNA or small interfering RNA in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts. Biochemical analyses revealed that HDAC5 deficiency resulted in activation of p53 in association with increased acetylation of p53. Furthermore, although acetylation of histone 4 (H4) is decreased during normal terminal erythroid differentiation, HDAC5 deficiency led to increased acetylation of H4 (K12) in late-stage erythroblasts. This increased acetylation was accompanied by decreased chromatin condensation, implying a role for H4 (K12) deacetylation in chromatin condensation. ATAC-seq and RNA sequencing analyses revealed that HDAC5 knockdown leads to increased chromatin accessibility genome-wide and global changes in gene expression. Moreover, pharmacological inhibition of HDAC5 by the inhibitor LMK235 also led to increased H4 acetylation, impaired chromatin condensation, and enucleation. Taken together, our findings have uncovered previously unrecognized roles and molecular mechanisms of action for HDAC5 in human erythropoiesis. These results may provide insights into understanding the anemia associated with HDAC inhibitor treatment.


Subject(s)
Erythroid Cells/cytology , Erythropoiesis , Histone Deacetylases/genetics , Apoptosis , Erythroblasts/cytology , Erythroblasts/metabolism , Erythroid Cells/metabolism , Humans , RNA Interference , RNA, Small Interfering/genetics , Up-Regulation
3.
Trends Immunol ; 41(5): 355-359, 2020 05.
Article in English | MEDLINE | ID: mdl-32249063

ABSTRACT

Coronavirus (CoV) disease 2019 (COVID-19) caused by severe acute respiratory syndrome (SARS)-CoV-2 (also known as 2019-nCoV) is threatening global public health, social stability, and economic development. To meet this challenge, this article discusses advances in the research and development of neutralizing antibodies (nAbs) for the prevention and treatment of infection by SARS-CoV-2 and other human CoVs.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus/immunology , Pneumonia, Viral/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Research/trends , SARS-CoV-2
4.
Proc Natl Acad Sci U S A ; 117(23): 12868-12876, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32457162

ABSTRACT

Fine-resolution differentiation trajectories of adult human hematopoietic stem cells (HSCs) involved in the generation of red cells is critical for understanding dynamic developmental changes that accompany human erythropoiesis. Using single-cell RNA sequencing (scRNA-seq) of primary human terminal erythroid cells (CD34-CD235a+) isolated directly from adult bone marrow (BM) and umbilical cord blood (UCB), we documented the transcriptome of terminally differentiated human erythroblasts at unprecedented resolution. The insights enabled us to distinguish polychromatic erythroblasts (PolyEs) at the early and late stages of development as well as the different development stages of orthochromatic erythroblasts (OrthoEs). We further identified a set of putative regulators of terminal erythroid differentiation and functionally validated three of the identified genes, AKAP8L, TERF2IP, and RNF10, by monitoring cell differentiation and apoptosis. We documented that knockdown of AKAP8L suppressed the commitment of HSCs to erythroid lineage and cell proliferation and delayed differentiation of colony-forming unit-erythroid (CFU-E) to the proerythroblast stage (ProE). In contrast, the knockdown of TERF2IP and RNF10 delayed differentiation of PolyE to OrthoE stage. Taken together, the convergence and divergence of the transcriptional continuums at single-cell resolution underscore the transcriptional regulatory networks that underlie human fetal and adult terminal erythroid differentiation.


Subject(s)
Cell Differentiation/genetics , Erythroblasts/physiology , Erythropoiesis/genetics , Adult , Apoptosis/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fetal Blood/cytology , Gene Knockdown Techniques , Gene Regulatory Networks , Humans , Infant, Newborn , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Multigene Family , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA-Seq , Shelterin Complex , Single-Cell Analysis , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Transcription, Genetic
5.
Biophys J ; 120(17): 3588-3599, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34352252

ABSTRACT

Spectrin tetramers of the membranes of enucleated mammalian erythrocytes play a critical role in red blood cell survival in circulation. One of the spectrins, αI, emerged in mammals with enucleated red cells after duplication of the ancestral α-spectrin gene common to all animals. The neofunctionalized αI-spectrin has moderate affinity for ßI-spectrin, whereas αII-spectrin, expressed in nonerythroid cells, retains ancestral characteristics and has a 10-fold higher affinity for ßI-spectrin. It has been hypothesized that this adaptation allows for rapid make and break of tetramers to accommodate membrane deformation. We have tested this hypothesis by generating mice with high-affinity spectrin tetramers formed by exchanging the site of tetramer formation in αI-spectrin (segments R0 and R1) for that of αII-spectrin. Erythrocytes with αIIßI presented normal hematologic parameters yet showed increased thermostability, and their membranes were significantly less deformable; under low shear forces, they displayed tumbling behavior rather than tank treading. The membrane skeleton is more stable with αIIßI and shows significantly less remodeling under deformation than red cell membranes of wild-type mice. These data demonstrate that spectrin tetramers undergo remodeling in intact erythrocytes and that this is required for the normal deformability of the erythrocyte membrane. We conclude that αI-spectrin represents evolutionary optimization of tetramer formation: neither higher-affinity tetramers (as shown here) nor lower affinity (as seen in hemolytic disease) can support the membrane properties required for effective tissue oxygenation in circulation.


Subject(s)
Erythrocyte Deformability , Spectrin , Animals , Biological Evolution , Erythrocyte Membrane , Erythrocytes , Mice
6.
Am J Hematol ; 96(9): 1064-1076, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34021930

ABSTRACT

Identification of stage-specific erythroid cells is critical for studies of normal and disordered human erythropoiesis. While immunophenotypic strategies have previously been developed to identify cells at each stage of terminal erythroid differentiation, erythroid progenitors are currently defined very broadly. Refined strategies to identify and characterize BFU-E and CFU-E subsets are critically needed. To address this unmet need, a flow cytometry-based technique was developed that combines the established surface markers CD34 and CD36 with CD117, CD71, and CD105. This combination allowed for the separation of erythroid progenitor cells into four discrete populations along a continuum of progressive maturation, with increasing cell size and decreasing nuclear/cytoplasmic ratio, proliferative capacity and stem cell factor responsiveness. This strategy was validated in uncultured, primary erythroid cells isolated from bone marrow of healthy individuals. Functional colony assays of these progenitor populations revealed enrichment of BFU-E only in the earliest population, transitioning to cells yielding BFU-E and CFU-E, then CFU-E only. Utilizing CD34/CD105 and GPA/CD105 profiles, all four progenitor stages and all five stages of terminal erythroid differentiation could be identified. Applying this immunophenotyping strategy to primary bone marrow cells from patients with myelodysplastic syndrome, identified defects in erythroid progenitors and in terminal erythroid differentiation. This novel immunophenotyping technique will be a valuable tool for studies of normal and perturbed human erythropoiesis. It will allow for the discovery of stage-specific molecular and functional insights into normal erythropoiesis as well as for identification and characterization of stage-specific defects in inherited and acquired disorders of erythropoiesis.


Subject(s)
Erythroid Cells/cytology , Erythroid Precursor Cells/cytology , Erythropoiesis , Antigens, CD/analysis , Antigens, CD34/analysis , Bone Marrow Cells/cytology , Cells, Cultured , Endoglin/analysis , Flow Cytometry/methods , Humans , Immunophenotyping/methods
7.
BMC Infect Dis ; 21(1): 871, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34433423

ABSTRACT

BACKGROUND: Epidemic projections and public health policies addressing Coronavirus disease (COVID)-19 have been implemented without data reporting on the seroconversion of the population since scalable antibody testing has only recently become available. METHODS: We measured the percentage of severe acute respiratory syndrome- Coronavirus-2 (SARS-CoV-2) seropositive individuals from 2008 blood donors drawn in the state of Rhode Island (RI). We utilized multiple antibody testing platforms, including lateral flow immunoassays (LFAs), enzyme-linked immunosorbent assays (ELISAs) and high throughput serological assays (HTSAs). To estimate seroprevalence, we utilized the Bayesian statistical method to adjust for sensitivity and specificity of the commercial tests used. RESULTS: We report than an estimated seropositive rate of RI blood donors of approximately 0.6% existed in April-May of 2020. Daily new case rates peaked in RI in late April 2020. We found HTSAs and LFAs were positively correlated with ELISA assays to detect antibodies specific to SARS-CoV-2 in blood donors. CONCLUSIONS: These data imply that seroconversion, and thus infection, is likely not widespread within this population. We conclude that IgG LFAs and HTSAs are suitable to conduct seroprevalence assays in random populations. More studies will be needed using validated serological tests to improve the precision and report the kinetic progression of seroprevalence estimates.


Subject(s)
Antibodies, Viral/blood , Blood Donors , COVID-19/epidemiology , SARS-CoV-2 , Bayes Theorem , Humans , Rhode Island/epidemiology , Seroepidemiologic Studies
8.
J Clin Microbiol ; 58(12)2020 11 18.
Article in English | MEDLINE | ID: mdl-32917729

ABSTRACT

The development of neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following infection or vaccination is likely to be critical for the development of sufficient population immunity to drive cessation of the coronavirus disease of 2019 (COVID-19) pandemic. A large number of serologic tests, platforms, and methodologies are being employed to determine seroprevalence in populations to select convalescent plasma samples for therapeutic trials and to guide policies about reopening. However, the tests have substantial variations in sensitivity and specificity, and their ability to quantitatively predict levels of NAbs is unknown. We collected 370 unique donors enrolled in the New York Blood Center Convalescent Plasma Program between April and May of 2020. We measured levels of antibodies in convalescent plasma samples using commercially available SARS-CoV-2 detection tests and in-house enzyme-linked immunosorbent assays (ELISAs) and correlated serological measurements with NAb activity measured using pseudotyped virus particles, which offer the most informative assessment of antiviral activity of patient sera against viral infection. Our data show that a large proportion of convalescent plasma samples have modest antibody levels and that commercially available tests have various degrees of accuracy in predicting NAb activity. We found that the Ortho anti-SARS-CoV-2 total Ig and IgG high-throughput serological assays (HTSAs) and the Abbott SARS-CoV-2 IgG assay quantify levels of antibodies that strongly correlate with the results of NAb assays and are consistent with gold standard ELISA results. These findings provide immediate clinical relevance to serology results that can be equated to NAb activity and could serve as a valuable roadmap to guide the choice and interpretation of serological tests for SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Biological Variation, Population , COVID-19/epidemiology , COVID-19/immunology , SARS-CoV-2/immunology , Serologic Tests , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/virology , Cell Line , Enzyme-Linked Immunosorbent Assay , High-Throughput Screening Assays , Humans , Immunophenotyping , Leukocytes, Mononuclear , Population Surveillance , Sensitivity and Specificity , Seroepidemiologic Studies , Serogroup , Serologic Tests/methods , United States/epidemiology
9.
Blood ; 132(22): 2406-2417, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30254129

ABSTRACT

Myelodysplastic syndromes (MDSs) are clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis. Anemia is the defining cytopenia of MDS patients, yet the molecular mechanisms for dyserythropoiesis in MDSs remain to be fully defined. Recent studies have revealed that heterozygous loss-of-function mutation of DNA dioxygenase TET2 is 1 of the most common mutations in MDSs and that TET2 deficiency disturbs erythroid differentiation. However, mechanistic insights into the role of TET2 on disordered erythropoiesis are not fully defined. Here, we show that TET2 deficiency leads initially to stem cell factor (SCF)-dependent hyperproliferation and impaired differentiation of human colony-forming unit-erythroid (CFU-E) cells, which were reversed by a c-Kit inhibitor. We further show that this was due to increased phosphorylation of c-Kit accompanied by decreased expression of phosphatase SHP-1, a negative regulator of c-Kit. At later stages, TET2 deficiency led to an accumulation of a progenitor population, which expressed surface markers characteristic of normal CFU-E cells but were functionally different. In contrast to normal CFU-E cells that require only erythropoietin (EPO) for proliferation, these abnormal progenitors required SCF and EPO and exhibited impaired differentiation. We termed this population of progenitors "marker CFU-E" cells. We further show that AXL expression was increased in marker CFU-E cells and that the increased AXL expression led to increased activation of AKT and ERK. Moreover, the altered proliferation and differentiation of marker CFU-E cells were partially rescued by an AXL inhibitor. Our findings document an important role for TET2 in erythropoiesis and have uncovered previously unknown mechanisms by which deficiency of TET2 contributes to ineffective erythropoiesis.


Subject(s)
DNA-Binding Proteins/genetics , Erythroid Precursor Cells/pathology , Loss of Function Mutation , Myelodysplastic Syndromes/genetics , Proto-Oncogene Proteins/genetics , Cell Line, Tumor , Cell Proliferation , DNA Methylation , Dioxygenases , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/metabolism , Erythropoiesis , Gene Deletion , Gene Knockdown Techniques , Humans , Myelodysplastic Syndromes/pathology , Proto-Oncogene Proteins c-kit/genetics , Up-Regulation
10.
Transfusion ; 60(7): 1348-1355, 2020 07.
Article in English | MEDLINE | ID: mdl-32449169

ABSTRACT

Since the beginning of the COVID-19 pandemic, the use of convalescent plasma as a possible treatment has been explored. Here we describe our experience as the first U.S. organization creating a COVID-19 convalescent plasma program to support its use through the single-patient emergency investigational new drug, the National Expanded Access Program, and multiple randomized controlled trials. Within weeks, we were able to distribute more than 8000 products, scale up collections to more than 4000 units per week, meet hospital demand, and support randomized controlled trials to evaluate the efficacy of convalescent plasma treatment. This was through strategic planning; redeployment of staff; and active engagement of hospital, community, and public health partners. Our partners helped with donor recruitment, testing, patient advocacy, and patient availability. The program will continue to evolve as we learn more about optimizing the product. Remaining issues to be resolved are antibody titers, dose, and at what stage of disease to transfuse.


Subject(s)
Antibodies, Viral , Betacoronavirus , Blood Component Transfusion , Coronavirus Infections , Pandemics , Plasma , Pneumonia, Viral , Antibodies, Viral/blood , Antibodies, Viral/therapeutic use , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Humans , Immunization, Passive , Pneumonia, Viral/blood , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Randomized Controlled Trials as Topic , SARS-CoV-2 , COVID-19 Serotherapy
11.
Blood ; 129(2): 226-237, 2017 01 12.
Article in English | MEDLINE | ID: mdl-27879259

ABSTRACT

Terminal erythroid differentiation is tightly coordinated with cell-cycle exit, which is regulated by cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors (CDKI), yet their roles in erythropoiesis remain to be fully defined. We show here that p19INK4d, a member of CDKI family, is abundantly expressed in erythroblasts and that p19INK4d knockdown delayed erythroid differentiation, inhibited cell growth, and led to increased apoptosis and generation of abnormally nucleated late-stage erythroblasts. Unexpectedly, p19INK4d knockdown did not affect cell cycle. Rather, it led to decreased expression of GATA1 protein. Importantly, the differentiation and nuclear defects were rescued by ectopic expression of GATA1. Because the GATA1 protein is protected by nuclear heat shock protein family (HSP) member HSP70, we examined the effects of p19INK4d knockdown on HSP70 and found that p19INK4d knockdown led to decreased expression of HSP70 and its nuclear localization. The reduced levels of HSP70 are the result of reduced extracellular signal-regulated kinase (ERK) activation. Further biochemical analysis revealed that p19INK4d directly binds to Raf kinase inhibitor PEBP1 and that p19INK4d knockdown increased the expression of PEBP1, which in turn led to reduced ERK activation. Thus we have identified an unexpected role for p19INK4d via a novel PEBP1-p-ERK-HSP70-GATA1 pathway. These findings are likely to have implications for improved understanding of disordered erythropoiesis.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p19/metabolism , Erythropoiesis/physiology , GATA1 Transcription Factor/metabolism , Gene Expression Regulation/physiology , Blotting, Western , Cells, Cultured , Fetal Blood , Flow Cytometry , Fluorescent Antibody Technique , Gene Knockdown Techniques , Humans , Immunoprecipitation , Polymerase Chain Reaction , Signal Transduction/physiology
12.
Blood ; 129(14): 2002-2012, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28167661

ABSTRACT

The ten-eleven translocation (TET) family of proteins plays important roles in a wide range of biological processes by oxidizing 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine. However, their function in erythropoiesis has remained unclear. We show here that TET2 and TET3 but not TET1 are expressed in human erythroid cells, and we explore the role of these proteins in erythropoiesis. Knockdown experiments revealed that TET2 and TET3 have different functions. Suppression of TET3 expression in human CD34+ cells markedly impaired terminal erythroid differentiation, as reflected by increased apoptosis, the generation of bi/multinucleated polychromatic/orthochromatic erythroblasts, and impaired enucleation, although without effect on erythroid progenitors. In marked contrast, TET2 knockdown led to hyper-proliferation and impaired differentiation of erythroid progenitors. Surprisingly, knockdown of neither TET2 nor TET3 affected global levels of 5mC. Thus, our findings have identified distinct roles for TET2 and TET3 in human erythropoiesis, and provide new insights into their role in regulating human erythroid differentiation at distinct stages of development. Moreover, because knockdown of TET2 recapitulates certain features of erythroid development defects characteristic of myelodysplastic syndromes (MDSs), and the TET2 gene mutation is one of the most common mutations in MDS, our findings may be relevant for improved understanding of dyserythropoiesis of MDS.


Subject(s)
DNA-Binding Proteins/metabolism , Dioxygenases/metabolism , Erythropoiesis/physiology , Hematopoietic Stem Cells/metabolism , Proto-Oncogene Proteins/metabolism , Antigens, CD34/genetics , Antigens, CD34/metabolism , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Gene Knockdown Techniques , Hematopoietic Stem Cells/cytology , Humans , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Proto-Oncogene Proteins/genetics
13.
Haematologica ; 104(11): 2178-2187, 2019 11.
Article in English | MEDLINE | ID: mdl-30872372

ABSTRACT

Ubiquitination is an enzymatic post-translational modification that affects protein fate. The ubiquitin-proteasome system (UPS) was first discovered in reticulocytes where it plays important roles in reticulocyte maturation. Recent studies have revealed that ubiquitination is a dynamic and reversible process and that deubiquitylases are capable of removing ubiquitin from their protein substrates. Given the fact that the UPS is highly active in reticulocytes, it is speculated that deubiquitylases may play important roles in erythropoiesis. Yet, the role of deubiquitylases in erythropoiesis remains largely unexplored. In the present study, we found that the expression of deubiquitylase USP7 is significantly increased during human terminal erythroid differentiation. We further showed that interfering with USP7 function, either by short hairpin RNA-mediated knockdown or USP7-specific inhibitors, impaired human terminal erythroid differentiation due to decreased GATA1 level and that restoration of GATA1 levels rescued the differentiation defect. Mechanistically, USP7 deficiency led to a decreased GATA1 protein level that could be reversed by proteasome inhibitors. Furthermore, USP7 interacts directly with GATA1 and catalyzes the removal of K48-linked poly ubiquitylation chains conjugated onto GATA1, thereby stabilizing GATA1 protein. Collectively, our findings have identified an important role of a deubiquitylase in human terminal erythroid differentiation by stabilizing GATA1, the master regulator of erythropoiesis.


Subject(s)
Cell Differentiation/genetics , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/metabolism , Erythropoiesis/genetics , GATA1 Transcription Factor/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitin-Specific Peptidase 7/metabolism , Biomarkers , Gene Expression Regulation, Developmental , Humans , Immunophenotyping , Models, Biological , Protein Binding , Protein Stability , Ubiquitination
14.
Transfusion ; 59(1): 250-258, 2019 01.
Article in English | MEDLINE | ID: mdl-30408199

ABSTRACT

BACKGROUND: Blood centers may offer point-based reward systems or cardiovascular disease (CVD) screening to incentivize donors. However, combining these incentives to improve CVD risk and blood donation rates has not been studied. STUDY DESIGN AND METHODS: Study was a three-arm prospective controlled trial: Group 1, control (routine points, no CVD screening); Group 2, CVD screening with routine points; and Group 3, CVD screening plus incentive double points. The primary objective was to determine if double versus routine incentive points led to improvement or maintenance of CVD risk profile assessed using self-reported changes in 1) reading food labels for calorie and fat content, 2) exercising daily, 3) reduced fat intake, and 4) increase in eating fruits and vegetables. Outcomes were compared at first and final (2-year) follow-up visits. As secondary outcome, median blood donation rates before enrollment and during study were compared. RESULTS: A total of 570 donors (290 in Group 1, 134 in Group 2, 146 Group 3) were selected. At first follow-up visit, 71.4% in Group 3 versus 62.0% in Group 2 subjects reported at least one of four positive behavioral changes (p < 0.001). Increase in reading food labels for calorie and fat content was the most common change and higher in Group 3 (Group 3 from 60.9% to 79.1%; Group 2 from 67.6% to 77.5%; p < 0.001). Final evaluation showed significant increase in self-reported exercise in Group 3 only (from baseline 52.9% to 68.3%; p < 0.05). Group 3 reported higher increase in median number of donations/year during study enrollment (6.8 [IQR, 4.3-12] vs. baseline 4.6 [IQR, 3.2-7.1] donations/year) than Group 2 (5.6 [IQR, 4.2-10.5] vs. baseline 4.9 [IQR, 3.5-10.2]) and Group 1 (4.4 [IQR, 2.7-8.0] vs. baseline 4.4 [IQR, 2.5-6.0] donations/year; p < 0.001). CONCLUSION: Positive donor reinforcement (double vs. routine points) resulted in better self-reported health maintenance behavior and increased donation rates.


Subject(s)
Cardiovascular Diseases/prevention & control , Adult , Blood Donors/psychology , Female , Humans , Male , Middle Aged , Motivation , Prospective Studies , Self Report , Surveys and Questionnaires
15.
Transfusion ; 59(8): 2567-2574, 2019 08.
Article in English | MEDLINE | ID: mdl-31145481

ABSTRACT

BACKGROUND: Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality for which multiple mitigation strategies have been implemented over the past decade. However, product-specific TRALI rates have not been reported longitudinally and may help refine additional mitigation strategies. STUDY DESIGN AND METHODS: This retrospective multicenter study included analysis of TRALI rates from 2007 through 2017. Numerators included definite or probable TRALI reports from five blood centers serving nine states in the United States. Denominators were components distributed from participating centers. Rates were calculated as per 100,000 components distributed (p < 0.05 significant). RESULTS: One hundred four TRALI cases were reported from 10,012,707 components distributed (TRALI rate of 1.04 per 100,000 components). The TRALI rate was 2.25 for female versus 1.08 for male donated components (p < .001). The TRALI rate declined from 2.88 in 2007 to 0.60 in 2017. From 2007 to 2013, there was a significantly higher TRALI rate associated with female versus male plasma (33.85 vs. 1.59; p < 0.001) and RBCs (1.97 vs. 1.15; p = 0.03). From 2014 through 2017, after implementation of mitigation strategies, a significantly higher TRALI rate only from female-donated plateletpheresis continued to be observed (2.98 vs. 0.75; p = 0.04). CONCLUSION: Although the TRALI rates have substantially decreased secondary to multiple strategies over the past decade, a residual risk remains, particularly with female-donated plateletpheresis products. Additional tools that may further mitigate TRALI incidence include the use of buffy coat pooled platelets suspended in male donor plasma or platelet additive solution due to the lower amounts of residual plasma.


Subject(s)
Blood Transfusion , Databases, Factual , Transfusion-Related Acute Lung Injury/epidemiology , Transfusion-Related Acute Lung Injury/prevention & control , Female , Humans , Incidence , Male , Retrospective Studies , Risk Factors , Transfusion-Related Acute Lung Injury/blood , United States/epidemiology
17.
Am J Hematol ; 93(4): 494-503, 2018 08.
Article in English | MEDLINE | ID: mdl-29274096

ABSTRACT

Studies of human erythropoiesis have relied, for the most part, on the in vitro differentiation of hematopoietic stem and progenitor cells (HSPC) from different sources. Here, we report that despite the common core erythroid program that exists between cord blood (CB)- and peripheral blood (PB)-HSPC induced toward erythroid differentiation in vitro, significant functional differences exist. We undertook a comparative analysis of human erythropoiesis using these two different sources of HSPC. Upon in vitro erythroid differentiation, CB-derived cells proliferated 4-fold more than PB-derived cells. However, CB-derived cells exhibited a delayed kinetics of differentiation, resulting in an increased number of progenitors, notably colony-forming unit (CFU-E). The phenotypes of early erythroid differentiation stages also differed between the two sources with a significantly higher percentage of IL3R- GPA- CD34+ CD36+ cells generated from PB- than CB-HSPCs. This subset was found to generate both burst-forming unit (BFU-E) and CFU-E colonies in colony-forming assays. To further understand the differences between CB- and PB-HSPC, cells at eight stages of erythroid differentiation were sorted from each of the two sources and their transcriptional profiles were compared. We document differences at the CD34, BFU-E, poly- and orthochromatic stages. Genes exhibiting the most significant differences in expression between HSPC sources clustered into cell cycle- and autophagy-related pathways. Altogether, our studies provide a qualitative and quantitative comparative analysis of human erythropoiesis, highlighting the impact of the developmental origin of HSPCs on erythroid differentiation.


Subject(s)
Aging/blood , Erythroid Precursor Cells/cytology , Erythropoiesis/physiology , Adult , Antigens, CD34/analysis , Cells, Cultured , Colony-Forming Units Assay , Erythroid Precursor Cells/drug effects , Erythropoiesis/genetics , Erythropoietin/pharmacology , Fetal Blood/cytology , Humans , Infant, Newborn , Transcriptome
18.
Transfusion ; 57(6): 1515-1521, 2017 06.
Article in English | MEDLINE | ID: mdl-28474337

ABSTRACT

BACKGROUND: Expanding the African American (AA) donor pool is critical to sustain transfusion support for sickle cell disease patients. STUDY DESIGN AND METHODS: The aims were to: 1) apply cognitive computing on donation related metrics to develop a predictive model that effectively identifies repeat AA donors, 2) determine whether a single e-mail communication could improve AA donor retention and compare retention results on higher versus lower predictive score donors, and 3) evaluate the effect of e-mail marketing on AA donor retention with culturally versus nonculturally tailored message. RESULTS: Between 2011 and 2012, 30,786 AA donors donated blood at least once on whom predictive repeat donor scores (PRDSs) was generated from donor-related metrics (frequency of donations, duration between donations, age, blood type, and sex). In 2013, 28% (8657/30,786) of 2011 to 2012 donors returned to donate on whom PRDS was validated. Returning blood donors had a higher mean PRDS compared to nonreturning donors (0.649 vs. 0.268; p < 0.001). In the e-mail pilot, high PRDS (≥0.6) compared to low PRDS (<0.6) was associated with 89% higher donor presentation rate (p < 0.001), 20% higher e-mail opening rate (p < 0.001), and, specifically among those who opened the e-mail, 159% higher presentation rate (p < 0.001). Finally, blood donation rate did not differ (p = 0.79) as a function of generic (n = 9312, 1.4%) versus culturally tailored (n = 9326, 1.3%) message. CONCLUSION: Computational algorithms utilizing readily available donor metrics can identify highly committed AA donors and in conjunction with targeted e-mail communication has the potential to increase the efficiency of donor marketing.


Subject(s)
Algorithms , Blood Donors/statistics & numerical data , Electronic Mail , Adolescent , Adult , Black or African American , Aged , Female , Humans , Male , Middle Aged , Young Adult
19.
Blood ; 124(12): 1868-72, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25006121

ABSTRACT

Human neutrophil antigen-3a (HNA-3a) antibodies contained in donor plasma can result in severe, sometimes fatal transfusion-related acute lung injury (TRALI). Recent developments in TRALI secondary to antibodies to HNA-3a antigen span diagnosis, pathophysiology, treatment, and prevention resulting in improved understanding, potential treatments, and mitigation strategies. First, on the molecular level, characterization of HNA-3 antigen has allowed for genotyping methods that clarify population prevalence. Related work has led to generation of multiple antibody detection assays. These assays aid in determining potential populations at risk and potential mitigation strategies. Second, the development of TRALI requires a hit from the patient and from the product. Anti- HNA-3a is one of the product-derived factors and appears to result in TRALI by binding directly to pulmonary endothelium as well as to neutrophils expressing the corresponding antigen. Finally, potential mitigation strategies include red blood cell product filtration to remove anti-HNA-3a as well as other antibodies.


Subject(s)
Acute Lung Injury/etiology , Acute Lung Injury/immunology , Isoantibodies/blood , Isoantigens/immunology , Membrane Glycoproteins/immunology , Membrane Transport Proteins/immunology , Transfusion Reaction , Acute Lung Injury/genetics , Blood Donors , Education, Medical, Continuing , Female , Genotype , Humans , Isoantigens/genetics , Male , Membrane Glycoproteins/genetics , Membrane Transport Proteins/genetics , Neutrophils/immunology
20.
Transfusion ; 56(12): 2941-2947, 2016 12.
Article in English | MEDLINE | ID: mdl-27704557

ABSTRACT

BACKGROUND: Each unit of blood donated is processed and stored individually resulting in variability in the amount of red blood cells (RBCs) collected, RBC properties, and the 24-hour posttransfusion RBC survivability. As a result, each unit differs in its ability to deliver oxygen and potentially its effects on the recipient. The goal of this study was to investigate the storage of pooled RBCs from multiple donors in comparison to control standard RBC units. STUDY DESIGN AND METHODS: Two units of irradiated, leukoreduced RBCs of same ABO, D, E, C, and K antigen phenotype were collected from each of five donors using apheresis. One unit from each donor was pooled in a 2-L bag and remaining units were used as controls. After being pooled, RBCs were separated in five bags and stored at 4°C along with the controls. Quality indexes were measured on Days 2, 14, and 28 for all the units. RESULTS: Adenosine triphosphate assays for both pooled and controls showed a slight decrease from Day 2 to Day 28 (pooled/control from 5.22/5.24 to 4.35/4.33 µmol/g hemoglobin [Hb]). 2,3-Diphosphoglycerate was successfully rejuvenated for all RBC units on Day 28 (pooled 11.46 µmol/g Hb; control 11.86 µmol/g Hb). The results showed a nonsignificant difference between pooled and control units, with a general trend of lower standard deviation for pooled units when compared to controls. CONCLUSION: Pooled units have reduced unit-to-unit variability. Future exploration of their immunogenicity is required before using pooled units for transfusion.


Subject(s)
Blood Preservation/methods , Erythrocytes/cytology , Quality Control , 2,3-Diphosphoglycerate/metabolism , Adenosine Triphosphate/metabolism , Blood Component Removal , Blood Preservation/standards , Blood Transfusion/standards , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL