Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 109(4): 669-679, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35263625

ABSTRACT

One mechanism by which genetic factors influence complex traits and diseases is altering gene expression. Direct measurement of gene expression in relevant tissues is rarely tenable; however, genetically regulated gene expression (GReX) can be estimated using prediction models derived from large multi-omic datasets. These approaches have led to the discovery of many gene-trait associations, but whether models derived from predominantly European ancestry (EA) reference panels can map novel associations in ancestrally diverse populations remains unclear. We applied PrediXcan to impute GReX in 51,520 ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) participants (35% African American, 45% Hispanic/Latino, 10% Asian, and 7% Hawaiian) across 25 key cardiometabolic traits and relevant tissues to identify 102 novel associations. We then compared associations in PAGE to those in a random subset of 50,000 White British participants from UK Biobank (UKBB50k) for height and body mass index (BMI). We identified 517 associations across 47 tissues in PAGE but not UKBB50k, demonstrating the importance of diverse samples in identifying trait-associated GReX. We observed that variants used in PrediXcan models were either more or less differentiated across continental-level populations than matched-control variants depending on the specific population reflecting sampling bias. Additionally, variants from identified genes specific to either PAGE or UKBB50k analyses were more ancestrally differentiated than those in genes detected in both analyses, underlining the value of population-specific discoveries. This suggests that while EA-derived transcriptome imputation models can identify new associations in non-EA populations, models derived from closely matched reference panels may yield further insights. Our findings call for more diversity in reference datasets of tissue-specific gene expression.


Subject(s)
Cardiovascular Diseases , Genome-Wide Association Study , Genetic Predisposition to Disease , Humans , Life Style , Polymorphism, Single Nucleotide , Transcriptome
2.
Nat Rev Genet ; 19(3): 175-185, 2018 03.
Article in English | MEDLINE | ID: mdl-29151588

ABSTRACT

Recent studies have highlighted the imperatives of including diverse and under-represented individuals in human genomics research and the striking gaps in attaining that inclusion. With its multidecade experience in supporting research and policy efforts in human genomics, the National Human Genome Research Institute is committed to establishing foundational approaches to study the role of genomic variation in health and disease that include diverse populations. Large-scale efforts to understand biology and health have yielded key scientific findings, lessons and recommendations on how to increase diversity in genomic research studies and the genomic research workforce. Increased attention to diversity will increase the accuracy, utility and acceptability of using genomic information for clinical care.


Subject(s)
Genetic Variation , Genome, Human , Genomics/methods , Human Genetics/methods , Precision Medicine/methods , Humans
3.
Am J Hum Genet ; 107(1): 72-82, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32504544

ABSTRACT

Genetics researchers and clinical professionals rely on diversity measures such as race, ethnicity, and ancestry (REA) to stratify study participants and patients for a variety of applications in research and precision medicine. However, there are no comprehensive, widely accepted standards or guidelines for collecting and using such data in clinical genetics practice. Two NIH-funded research consortia, the Clinical Genome Resource (ClinGen) and Clinical Sequencing Evidence-generating Research (CSER), have partnered to address this issue and report how REA are currently collected, conceptualized, and used. Surveying clinical genetics professionals and researchers (n = 448), we found heterogeneity in the way REA are perceived, defined, and measured, with variation in the perceived importance of REA in both clinical and research settings. The majority of respondents (>55%) felt that REA are at least somewhat important for clinical variant interpretation, ordering genetic tests, and communicating results to patients. However, there was no consensus on the relevance of REA, including how each of these measures should be used in different scenarios and what information they can convey in the context of human genetics. A lack of common definitions and applications of REA across the precision medicine pipeline may contribute to inconsistencies in data collection, missing or inaccurate classifications, and misleading or inconclusive results. Thus, our findings support the need for standardization and harmonization of REA data collection and use in clinical genetics and precision health research.


Subject(s)
Data Collection/standards , Genetic Testing/standards , Adult , Child , Ethnicity , Female , Genetic Variation/genetics , Genomics/standards , Humans , Male , Precision Medicine/standards , Prohibitins , Surveys and Questionnaires
4.
Am J Med Genet A ; 191(2): 391-399, 2023 02.
Article in English | MEDLINE | ID: mdl-36341765

ABSTRACT

Clinical research studies have navigated many changes throughout the COVID-19 pandemic. We sought to describe the pandemic's impact on research operations in the context of a clinical genomics research consortium that aimed to enroll a majority of participants from underrepresented populations. We interviewed (July to November 2020) and surveyed (May to August 2021) representatives of six projects in the Clinical Sequencing Evidence-Generating Research (CSER) consortium, which studies the implementation of genome sequencing in the clinical care of patients from populations that are underrepresented in genomics research or are medically underserved. Questions focused on COVID's impact on participant recruitment, enrollment, and engagement, and the transition to teleresearch. Responses were combined and thematically analyzed. Projects described factors at the project, institutional, and community levels that affected their experiences. Project factors included the project's progress at the pandemic's onset, the urgency of in-person clinical care for the disease being studied, and the degree to which teleresearch procedures were already incorporated. Institutional and community factors included institutional guidance for research and clinical care and the burden of COVID on the local community. Overall, being responsive to community experiences and values was essential to how CSER navigated evolving challenges during the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/epidemiology , Population Groups , Surveys and Questionnaires , Genomics/methods
5.
PLoS Genet ; 16(3): e1008684, 2020 03.
Article in English | MEDLINE | ID: mdl-32226016

ABSTRACT

Lipid levels are important markers for the development of cardio-metabolic diseases. Although hundreds of associated loci have been identified through genetic association studies, the contribution of genetic factors to variation in lipids is not fully understood, particularly in U.S. minority groups. We performed genome-wide association analyses for four lipid traits in over 45,000 ancestrally diverse participants from the Population Architecture using Genomics and Epidemiology (PAGE) Study, followed by a meta-analysis with several European ancestry studies. We identified nine novel lipid loci, five of which showed evidence of replication in independent studies. Furthermore, we discovered one novel gene in a PrediXcan analysis, minority-specific independent signals at eight previously reported loci, and potential functional variants at two known loci through fine-mapping. Systematic examination of known lipid loci revealed smaller effect estimates in African American and Hispanic ancestry populations than those in Europeans, and better performance of polygenic risk scores based on minority-specific effect estimates. Our findings provide new insight into the genetic architecture of lipid traits and highlight the importance of conducting genetic studies in diverse populations in the era of precision medicine.


Subject(s)
Lipids/blood , Lipids/genetics , Racial Groups/genetics , Databases, Genetic , Female , Genome-Wide Association Study/methods , Genotype , Humans , Lipids/analysis , Male , Metagenomics/methods , Minority Groups , Multifactorial Inheritance/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , United States/epidemiology
6.
Am J Hum Genet ; 104(6): 1088-1096, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31104772

ABSTRACT

Conceptual frameworks are useful in research because they can highlight priority research domains, inform decisions about interventions, identify outcomes and factors to measure, and display how factors might relate to each other to generate and test hypotheses. Discovery, translational, and implementation research are all critical to the overall mission of genomic medicine and prevention, but they have yet to be organized into a unified conceptual framework. To fill this gap, our diverse team collaborated to develop the Genomic Medicine Integrative Research (GMIR) Framework, a simple but comprehensive tool to aid the genomics community in developing research questions, strategies, and measures and in integrating genomic medicine and prevention into clinical practice. Here we present the GMIR Framework and its development, along with examples of its use for research development, demonstrating how we applied it to select and harmonize measures for use across diverse genomic medicine implementation projects. Researchers can utilize the GMIR Framework for their own research, collaborative investigations, and clinical implementation efforts; clinicians can use it to establish and evaluate programs; and all stakeholders can use it to help allocate resources and make sure that the full complexity of etiology is included in research and program design, development, and evaluation.


Subject(s)
Biomedical Research , Delivery of Health Care, Integrated , Genetics, Medical , Genomics/methods , Precision Medicine/methods , Rare Diseases/genetics , Research Design , Humans , Models, Theoretical
7.
Genet Med ; 24(1): 238-244, 2022 01.
Article in English | MEDLINE | ID: mdl-34906461

ABSTRACT

PURPOSE: There is limited payer coverage for genome sequencing (GS) relative to exome sequencing (ES) in the U.S. Our objective was to assess payers' considerations for coverage of GS versus coverage of ES and requirements payers have for coverage of GS. The study was conducted by the NIH-funded Clinical Sequencing Evidence-Generating Research Consortium (CSER). METHODS: We conducted semi-structured interviews with representatives of private payer organizations (payers, N = 12) on considerations and evidentiary and other needs for coverage of GS and ES. Data were analyzed using thematic analysis. RESULTS: We described four categories of findings and solutions: demonstrated merits of GS versus ES, enhanced methods for evidence generation, consistent laboratory processes/sequencing methods, and enhanced implementation/care delivery. Payers see advantages to GS vs. ES and are open to broader GS coverage but need more proof of these advantages to consider them in coverage decision-making. Next steps include establishing evidence of benefits in specific clinical scenarios, developing quality standards, ensuring transparency of laboratory methods, developing clinical centers of excellence, and incorporating the role of genetic professionals. CONCLUSION: By comparing coverage considerations for GS and ES, we identified a path forward for coverage of GS. Future research should explicitly address payers' conditions for coverage.


Subject(s)
Exome , Insurance Coverage , Base Sequence , Chromosome Mapping , Exome/genetics , Humans , Exome Sequencing
8.
Genet Med ; 24(10): 2014-2027, 2022 10.
Article in English | MEDLINE | ID: mdl-35833928

ABSTRACT

PURPOSE: Methodological challenges have limited economic evaluations of genome sequencing (GS) and exome sequencing (ES). Our objective was to develop conceptual frameworks for model-based cost-effectiveness analyses (CEAs) of diagnostic GS/ES. METHODS: We conducted a scoping review of economic analyses to develop and iterate with experts a set of conceptual CEA frameworks for GS/ES for prenatal testing, early diagnosis in pediatrics, diagnosis of delayed-onset disorders in pediatrics, genetic testing in cancer, screening of newborns, and general population screening. RESULTS: Reflecting on 57 studies meeting inclusion criteria, we recommend the following considerations for each clinical scenario. For prenatal testing, performing comparative analyses of costs of ES strategies and postpartum care, as well as genetic diagnoses and pregnancy outcomes. For early diagnosis in pediatrics, modeling quality-adjusted life years (QALYs) and costs over ≥20 years for rapid turnaround GS/ES. For hereditary cancer syndrome testing, modeling cumulative costs and QALYs for the individual tested and first/second/third-degree relatives. For tumor profiling, not restricting to treatment uptake or response and including QALYs and costs of downstream outcomes. For screening, modeling lifetime costs and QALYs and considering consequences of low penetrance and GS/ES reanalysis. CONCLUSION: Our frameworks can guide the design of model-based CEAs and ultimately foster robust evidence for the economic value of GS/ES.


Subject(s)
Exome , Genetic Testing , Child , Cost-Benefit Analysis , Exome/genetics , Female , Genetic Testing/methods , Humans , Infant, Newborn , Pregnancy , Quality-Adjusted Life Years , Exome Sequencing/methods
9.
BMC Genomics ; 22(1): 432, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34107879

ABSTRACT

BACKGROUND: Circulating white blood cell and platelet traits are clinically linked to various disease outcomes and differ across individuals and ancestry groups. Genetic factors play an important role in determining these traits and many loci have been identified. However, most of these findings were identified in populations of European ancestry (EA), with African Americans (AA), Hispanics/Latinos (HL), and other races/ethnicities being severely underrepresented. RESULTS: We performed ancestry-combined and ancestry-specific genome-wide association studies (GWAS) for white blood cell and platelet traits in the ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) Study, including 16,201 AA, 21,347 HL, and 27,236 EA participants. We identified six novel findings at suggestive significance (P < 5E-8), which need confirmation, and independent signals at six previously established regions at genome-wide significance (P < 2E-9). We confirmed multiple previously reported genome-wide significant variants in the single variant association analysis and multiple genes using PrediXcan. Evaluation of loci reported from a Euro-centric GWAS indicated attenuation of effect estimates in AA and HL compared to EA populations. CONCLUSIONS: Our results highlighted the potential to identify ancestry-specific and ancestry-agnostic variants in participants with diverse backgrounds and advocate for continued efforts in improving inclusion of racially/ethnically diverse populations in genetic association studies for complex traits.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Genomics , Humans , Leukocytes , Phenotype
10.
Am J Hum Genet ; 103(3): 319-327, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30193136

ABSTRACT

The Clinical Sequencing Evidence-Generating Research (CSER) consortium, now in its second funding cycle, is investigating the effectiveness of integrating genomic (exome or genome) sequencing into the clinical care of diverse and medically underserved individuals in a variety of healthcare settings and disease states. The consortium comprises a coordinating center, six funded extramural clinical projects, and an ongoing National Human Genome Research Institute (NHGRI) intramural project. Collectively, these projects aim to enroll and sequence over 6,100 participants in four years. At least 60% of participants will be of non-European ancestry or from underserved settings, with the goal of diversifying the populations that are providing an evidence base for genomic medicine. Five of the six clinical projects are enrolling pediatric patients with various phenotypes. One of these five projects is also enrolling couples whose fetus has a structural anomaly, and the sixth project is enrolling adults at risk for hereditary cancer. The ongoing NHGRI intramural project has enrolled primarily healthy adults. Goals of the consortium include assessing the clinical utility of genomic sequencing, exploring medical follow up and cascade testing of relatives, and evaluating patient-provider-laboratory level interactions that influence the use of this technology. The findings from the CSER consortium will offer patients, healthcare systems, and policymakers a clearer understanding of the opportunities and challenges of providing genomic medicine in diverse populations and settings, and contribute evidence toward developing best practices for the delivery of clinically useful and cost-effective genomic sequencing in diverse healthcare settings.


Subject(s)
Genome, Human/genetics , Adult , Cost-Benefit Analysis/methods , Delivery of Health Care/methods , Europe , Exome/genetics , Genomics/methods , Humans , National Human Genome Research Institute (U.S.) , Phenotype , United States , Whole Genome Sequencing/methods
11.
Nucleic Acids Res ; 47(D1): D1005-D1012, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30445434

ABSTRACT

The GWAS Catalog delivers a high-quality curated collection of all published genome-wide association studies enabling investigations to identify causal variants, understand disease mechanisms, and establish targets for novel therapies. The scope of the Catalog has also expanded to targeted and exome arrays with 1000 new associations added for these technologies. As of September 2018, the Catalog contains 5687 GWAS comprising 71673 variant-trait associations from 3567 publications. New content includes 284 full P-value summary statistics datasets for genome-wide and new targeted array studies, representing 6 × 109 individual variant-trait statistics. In the last 12 months, the Catalog's user interface was accessed by ∼90000 unique users who viewed >1 million pages. We have improved data access with the release of a new RESTful API to support high-throughput programmatic access, an improved web interface and a new summary statistics database. Summary statistics provision is supported by a new format proposed as a community standard for summary statistics data representation. This format was derived from our experience in standardizing heterogeneous submissions, mapping formats and in harmonizing content. Availability: https://www.ebi.ac.uk/gwas/.


Subject(s)
Databases, Genetic , Genome-Wide Association Study , Disease/genetics , Genetic Variation , Humans , Microarray Analysis , Publications , Software , User-Computer Interface
12.
BMC Genomics ; 21(1): 228, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32171239

ABSTRACT

BACKGROUND: Quantitative red blood cell (RBC) traits are highly polygenic clinically relevant traits, with approximately 500 reported GWAS loci. The majority of RBC trait GWAS have been performed in European- or East Asian-ancestry populations, despite evidence that rare or ancestry-specific variation contributes substantially to RBC trait heritability. Recently developed combined-phenotype methods which leverage genetic trait correlation to improve statistical power have not yet been applied to these traits. Here we leveraged correlation of seven quantitative RBC traits in performing a combined-phenotype analysis in a multi-ethnic study population. RESULTS: We used the adaptive sum of powered scores (aSPU) test to assess combined-phenotype associations between ~ 21 million SNPs and seven RBC traits in a multi-ethnic population (maximum n = 67,885 participants; 24% African American, 30% Hispanic/Latino, and 43% European American; 76% female). Thirty-nine loci in our multi-ethnic population contained at least one significant association signal (p < 5E-9), with lead SNPs at nine loci significantly associated with three or more RBC traits. A majority of the lead SNPs were common (MAF > 5%) across all ancestral populations. Nineteen additional independent association signals were identified at seven known loci (HFE, KIT, HBS1L/MYB, CITED2/FILNC1, ABO, HBA1/2, and PLIN4/5). For example, the HBA1/2 locus contained 14 conditionally independent association signals, 11 of which were previously unreported and are specific to African and Amerindian ancestries. One variant in this region was common in all ancestries, but exhibited a narrower LD block in African Americans than European Americans or Hispanics/Latinos. GTEx eQTL analysis of all independent lead SNPs yielded 31 significant associations in relevant tissues, over half of which were not at the gene immediately proximal to the lead SNP. CONCLUSION: This work identified seven loci containing multiple independent association signals for RBC traits using a combined-phenotype approach, which may improve discovery in genetically correlated traits. Highly complex genetic architecture at the HBA1/2 locus was only revealed by the inclusion of African Americans and Hispanics/Latinos, underscoring the continued importance of expanding large GWAS to include ancestrally diverse populations.


Subject(s)
Black or African American/genetics , Erythrocytes/metabolism , Genome-Wide Association Study/methods , Hispanic or Latino/genetics , Quantitative Trait, Heritable , White People/genetics , Female , Genetics, Population , Humans , Male , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , United States/ethnology
13.
Hum Mol Genet ; 27(16): 2940-2953, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29878111

ABSTRACT

C-reactive protein (CRP) is a circulating biomarker indicative of systemic inflammation. We aimed to evaluate genetic associations with CRP levels among non-European-ancestry populations through discovery, fine-mapping and conditional analyses. A total of 30 503 non-European-ancestry participants from 6 studies participating in the Population Architecture using Genomics and Epidemiology study had serum high-sensitivity CRP measurements and ∼200 000 single nucleotide polymorphisms (SNPs) genotyped on the Metabochip. We evaluated the association between each SNP and log-transformed CRP levels using multivariate linear regression, with additive genetic models adjusted for age, sex, the first four principal components of genetic ancestry, and study-specific factors. Differential linkage disequilibrium patterns between race/ethnicity groups were used to fine-map regions associated with CRP levels. Conditional analyses evaluated for multiple independent signals within genetic regions. One hundred and sixty-three unique variants in 12 loci in overall or race/ethnicity-stratified Metabochip-wide scans reached a Bonferroni-corrected P-value <2.5E-7. Three loci have no (HACL1, OLFML2B) or only limited (PLA2G6) previous associations with CRP levels. Six loci had different top hits in race/ethnicity-specific versus overall analyses. Fine-mapping refined the signal in six loci, particularly in HNF1A. Conditional analyses provided evidence for secondary signals in LEPR, IL1RN and HNF1A, and for multiple independent signals in CRP and APOE. We identified novel variants and loci associated with CRP levels, generalized known CRP associations to a multiethnic study population, refined association signals at several loci and found evidence for multiple independent signals at several well-known loci. This study demonstrates the benefit of conducting inclusive genetic association studies in large multiethnic populations.


Subject(s)
C-Reactive Protein/genetics , Genome-Wide Association Study , Metagenomics , Molecular Epidemiology/methods , Carbon-Carbon Lyases , Enoyl-CoA Hydratase/genetics , Female , Glycoproteins/genetics , Group VI Phospholipases A2/genetics , Humans , Linkage Disequilibrium , Male , Polymorphism, Single Nucleotide , White People/genetics
14.
Am J Hum Genet ; 98(6): 1051-1066, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27181682

ABSTRACT

Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine.


Subject(s)
Biomedical Research , Evidence-Based Practice , Exome/genetics , Genome, Human , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide/genetics , Adult , Cardiovascular Diseases/genetics , Child , Clinical Trials as Topic , Humans , National Human Genome Research Institute (U.S.) , Population Groups , Software , United States
15.
Genet Med ; 21(5): 1100-1110, 2019 05.
Article in English | MEDLINE | ID: mdl-30287922

ABSTRACT

PURPOSE: Clinical sequencing emerging in health care may result in secondary findings (SFs). METHODS: Seventy-four of 6240 (1.2%) participants who underwent genome or exome sequencing through the Clinical Sequencing Exploratory Research (CSER) Consortium received one or more SFs from the original American College of Medical Genetics and Genomics (ACMG) recommended 56 gene-condition pair list; we assessed clinical and psychosocial actions. RESULTS: The overall adjusted prevalence of SFs in the ACMG 56 genes across the CSER consortium was 1.7%. Initially 32% of the family histories were positive, and post disclosure, this increased to 48%. The average cost of follow-up medical actions per finding up to a 1-year period was $128 (observed, range: $0-$678) and $421 (recommended, range: $141-$1114). Case reports revealed variability in the frequency of and follow-up on medical recommendations patients received associated with each SF gene-condition pair. Participants did not report adverse psychosocial impact associated with receiving SFs; this was corroborated by 18 participant (or parent) interviews. All interviewed participants shared findings with relatives and reported that relatives did not pursue additional testing or care. CONCLUSION: Our results suggest that disclosure of SFs shows little to no adverse impact on participants and adds only modestly to near-term health-care costs; additional studies are needed to confirm these findings.


Subject(s)
Genetic Testing/economics , Incidental Findings , Whole Genome Sequencing/ethics , Adult , Decision Making/ethics , Disclosure , Exome , Female , Genetic Testing/ethics , Genetic Testing/standards , Genomics/methods , Health Care Costs , Health Knowledge, Attitudes, Practice , Health Personnel , High-Throughput Nucleotide Sequencing/ethics , Humans , Intention , Male , Patients , Prevalence , Whole Genome Sequencing/economics
17.
Hum Mutat ; 39(11): 1713-1720, 2018 11.
Article in English | MEDLINE | ID: mdl-30311373

ABSTRACT

The Clinical Genome Resource (ClinGen) Ancestry and Diversity Working Group highlights the need to develop guidance on race, ethnicity, and ancestry (REA) data collection and use in clinical genomics. We present quantitative and qualitative evidence to characterize: (1) acquisition of REA data via clinical laboratory requisition forms, and (2) information disparity across populations in the Genome Aggregation Database (gnomAD) at clinically relevant sites ascertained from annotations in ClinVar. Our requisition form analysis showed substantial heterogeneity in clinical laboratory ascertainment of REA, as well as marked incongruity among terms used to define REA categories. There was also striking disparity across REA populations in the amount of information available about clinically relevant variants in gnomAD. European ancestral populations constituted the majority of observations (55.8%), allele counts (59.7%), and private alleles (56.1%) in gnomAD at 550 loci with "pathogenic" and "likely pathogenic" expert-reviewed variants in ClinVar. Our findings highlight the importance of implementing and supporting programs to increase diversity in genome sequencing and clinical genomics, as well as measuring uncertainty around population-level datasets that are used in variant interpretation. Finally, we suggest the need for a standardized REA data collection framework to be developed through partnerships and collaborations and adopted across clinical genomics.


Subject(s)
Genetic Variation/genetics , Alleles , Ethnicity , Genetic Testing/methods , Genomics/methods , Humans , Mutation , Prohibitins
18.
Hum Mol Genet ; 25(19): 4350-4368, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27577874

ABSTRACT

The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 × 10-14) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 × 10-4). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 × 10-8) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 × 10-9). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 × 10-7), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS-SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved.


Subject(s)
Cardiovascular Diseases/genetics , Genome-Wide Association Study , Heart Ventricles/physiopathology , NAV1.5 Voltage-Gated Sodium Channel/genetics , Black or African American/genetics , Alleles , Cardiovascular Diseases/mortality , Cardiovascular Diseases/physiopathology , Electrocardiography , Female , Genotype , Humans , Male , Myocardium/pathology , Polymorphism, Single Nucleotide/genetics , White People/genetics
19.
Genet Med ; 20(10): 1186-1195, 2018 10.
Article in English | MEDLINE | ID: mdl-29388940

ABSTRACT

PURPOSE: Secondary findings from genomic sequencing are becoming more common. We compared how health-care providers with and without specialized genetics training anticipated responding to different types of secondary findings. METHODS: Providers with genomic sequencing experience reviewed five secondary-findings reports and reported attitudes and potential clinical follow-up. Analyses compared genetic specialists and physicians without specialized genetics training, and examined how responses varied by secondary finding. RESULTS: Genetic specialists scored higher than other providers on four-point scales assessing understandings of reports (3.89 vs. 3.42, p = 0.0002), and lower on scales assessing reporting obligations (2.60 vs. 3.51, p < 0.0001) and burdens of responding (1.73 vs. 2.70, p < 0.0001). Nearly all attitudes differed between findings, although genetic specialists were more likely to assert that laboratories had no obligations when findings had less-established actionability (p < 0.0001 in interaction tests). The importance of reviewing personal and family histories, documenting findings, learning more about the variant, and recommending familial discussions also varied according to finding (all p < 0.0001). CONCLUSION: Genetic specialists felt better prepared to respond to secondary findings than providers without specialized genetics training, but perceived fewer obligations for laboratories to report them, and the two groups anticipated similar clinical responses. Findings may inform development of targeted education and support.


Subject(s)
Genetic Testing , Genomics , Health Knowledge, Attitudes, Practice , Sequence Analysis, DNA , Attitude of Health Personnel , Disclosure , Education, Medical , Health Personnel , Humans , Incidental Findings , Physicians , Specialization , Surveys and Questionnaires
20.
Genet Med ; 20(8): 855-866, 2018 08.
Article in English | MEDLINE | ID: mdl-29144510

ABSTRACT

PURPOSE: As massively parallel sequencing is increasingly being used for clinical decision making, it has become critical to understand parameters that affect sequencing quality and to establish methods for measuring and reporting clinical sequencing standards. In this report, we propose a definition for reduced coverage regions and describe a set of standards for variant calling in clinical sequencing applications. METHODS: To enable sequencing centers to assess the regions of poor sequencing quality in their own data, we optimized and used a tool (ExCID) to identify reduced coverage loci within genes or regions of particular interest. We used this framework to examine sequencing data from 500 patients generated in 10 projects at sequencing centers in the National Human Genome Research Institute/National Cancer Institute Clinical Sequencing Exploratory Research Consortium. RESULTS: This approach identified reduced coverage regions in clinically relevant genes, including known clinically relevant loci that were uniquely missed at individual centers, in multiple centers, and in all centers. CONCLUSION: This report provides a process road map for clinical sequencing centers looking to perform similar analyses on their data.


Subject(s)
Exome Sequencing/methods , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods , Base Sequence , Chromosome Mapping , Exome , Genome, Human , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, DNA/standards , Software
SELECTION OF CITATIONS
SEARCH DETAIL