Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anal Bioanal Chem ; 414(1): 425-438, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33768366

ABSTRACT

The anthropogenic entry of organic micropollutants into the aquatic environment leads to a potential risk for drinking water resources and the drinking water itself. Therefore, sensitive screening analysis methods are needed to monitor the raw and drinking water quality continuously. Non-target screening analysis has been shown to allow for a more comprehensive investigation of drinking water processes compared to target analysis alone. However, non-target screening is challenging due to the many features that can be detected. Thus, data processing techniques to reduce the high number of features are necessary, and prioritization techniques are important to find the features of interest for identification, as identification of unknown substances is challenging as well. In this study, a drinking water production process, where drinking water is supplied by a water reservoir, was investigated. Since the water reservoir provides surface water, which is anthropogenically influenced by wastewater treatment plant (WWTP) effluents, substances originating from WWTP effluents and reaching the drinking water were investigated, because this indicates that they cannot be removed by the drinking water production process. For this purpose, ultra-performance liquid chromatography coupled with an ion-mobility high-resolution mass spectrometer (UPLC-IM-HRMS) was used in a combined approach including target, suspect and non-target screening analysis to identify known and unknown substances. Additionally, the role of ion-mobility-derived collision cross sections (CCS) in identification is discussed. To that end, six samples (two WWTP effluent samples, a surface water sample that received the effluents, a raw water sample from a downstream water reservoir, a process sample and the drinking water) were analyzed. Positive findings for a total of 60 substances in at least one sample were obtained through quantitative screening. Sixty-five percent (15 out of 23) of the identified substances in the drinking water sample were pharmaceuticals and transformation products of pharmaceuticals. Using suspect screening, further 33 substances were tentatively identified in one or more samples, where for 19 of these substances, CCS values could be compared with CCS values from the literature, which supported the tentative identification. Eight substances were identified by reference standards. In the non-target screening, a total of ten features detected in all six samples were prioritized, whereby metoprolol acid/atenolol acid (a transformation product of the two ß-blockers metoprolol and atenolol) and 1,3-benzothiazol-2-sulfonic acid (a transformation product of the vulcanization accelerator 2-mercaptobenzothiazole) were identified with reference standards. Overall, this study demonstrates the added value of a comprehensive water monitoring approach based on UPLC-IM-HRMS analysis.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Chromatography, Liquid/methods , Drinking Water/analysis , Mass Spectrometry , Wastewater/analysis , Water Pollutants, Chemical/analysis
2.
Anal Bioanal Chem ; 411(23): 6101-6110, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31278550

ABSTRACT

Suspect and non-target screening based on the use of high-resolution mass spectrometry (HRMS) has become more common in water analysis over the past years. However, this only yields lists of features or suspects without quantitative information. To expand the use of HRMS data to a quantitative screening, we have developed and validated a simple and fast method for more than 140 micropollutants using ultra high-performance liquid chromatography coupled to traveling wave ion mobility quadrupole time-of-flight mass spectrometry (UPLC-IM-Q-TOF-MS). Positive findings from suspect and non-target screening can be prioritized and identified by reference standards. The quantitative screening is then performed by additional measurement of calibration standards. This is carried out by means of direct injection and external calibration, without consideration of matrix effects. For all substances, limits of quantification (LOQs) of less or equal than 100 ng/L are achieved. The calibration is carried out in a range of 100 to 1000 ng/L and the results are reported as concentration ranges, in which the concentration of the analyte in the sample is to be expected. All substances were evaluated using quadratic regressions. For the verification of the accuracy, different water matrices (drinking water, groundwater, and surface water) were spiked with five concentration levels (50 ng/L, 300 ng/L, 500 ng/L, 800 ng/L, and 2000 ng/L) and indicate that for the drinking water and groundwater sample, 97% correct assignments were found, whereas for the surface water sample, 88% correct assignments were achieved. A comparative study of water samples of various matrices was accomplished using the quantitative screening analysis method and validated target methods by means of three UPLC tandem mass spectrometry (MS/MS) methods and two gas chromatography (GC) coupled to MS and MS/MS methods. A total of 510 data could be compared, which showed a good match of both approaches in more than 80% of the results. As an alternative strategy for the monitoring of water samples by UPLC-IM-Q-TOF-MS, this method provides quantitative information about target components, besides tentatively or identified substances from suspect or non-target screening. Depending on the resulting concentration range and reporting requirements, validated target methods can be further used for the previously detected targets. Graphical abstract.

3.
Anal Chem ; 90(20): 12042-12050, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30215509

ABSTRACT

Collision cross section (CCS, Ω) values determined by ion mobility mass spectrometry (IM-MS) provide the study of ion shape in the gas phase and use of these as further identification criteria in analytical approaches. Databases of CCS values for a variety of molecules determined by different instrument types are available. In this study, the comparability of CCS values determined by a drift tube ion mobility mass spectrometer (DTIM-MS) and a traveling wave ion mobility mass spectrometer (TWIM-MS) was investigated to test if a common database could be used across IM techniques. A total of 124 substances were measured with both systems and CCS values of [M + H]+ and [M + Na]+ adducts were compared. Deviations <1% were found for most substances, but some compounds show deviations up to 6.2%, which indicate that CCS databases cannot be used without care independently from the instrument type. Additionally, it was found that for several molecules [2M + Na]+ ions were formed during electrospray ionization, whereas a part of them disintegrates to [M + Na]+ ions after passing through the drift tube and before reaching the TOF region, resulting in two signals in their drift spectrum for the [M + Na]+ adduct. Finally, the impact of different LC-IM-MS settings (solvent composition, solvent flow rate, desolvation temperature, and desolvation gas flow rate) were investigated to test whether they have an influence on the CCS values or not. The results showed that these conditions have no significant impact. Only for karbutilate changes in the drift spectrum could be observed with different solvent types and flow rates using the DTIM-MS system, which could be caused by the protonation at different sites in the molecule.

SELECTION OF CITATIONS
SEARCH DETAIL