Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
G3 (Bethesda) ; 14(3)2024 03 06.
Article in English | MEDLINE | ID: mdl-38142435

ABSTRACT

Lingonberry (Vaccinium vitis-idaea L.) produces tiny red berries that are tart and nutty in flavor. It grows widely in the circumpolar region, including Scandinavia, northern parts of Eurasia, Alaska, and Canada. Although cultivation is currently limited, the plant has a long history of cultural use among indigenous communities. Given its potential as a food source, genomic resources for lingonberry are significantly lacking. To advance genomic knowledge, the genomes for 2 subspecies of lingonberry (V. vitis-idaea ssp. minus and ssp. vitis-idaea var. 'Red Candy') were sequenced and de novo assembled into contig-level assemblies. The assemblies were scaffolded using the bilberry genome (Vaccinium myrtillus) to generate a chromosome-anchored reference genome consisting of 12 chromosomes each with a total length of 548.07 Mb [contig N50 = 1.17 Mb, BUSCO (C%) = 96.5%] for ssp. vitis-idaea and 518.70 Mb [contig N50 = 1.40 Mb, BUSCO (C%) = 96.9%] for ssp. minus. RNA-seq-based gene annotation identified 27,243 and 25,718 genes on the respective assembly, and transposable element detection methods found that 45.82 and 44.58% of the genome were repeats. Phylogenetic analysis confirmed that lingonberry was most closely related to bilberry and was more closely related to blueberries than cranberries. Estimates of past effective population size suggested a continuous decline over the past 1-3 MYA, possibly due to the impacts of repeated glacial cycles during the Pleistocene leading to frequent population fragmentation. The genomic resource created in this study can be used to identify industry-relevant genes (e.g. anthocyanin production), infer phylogeny, and call sequence-level variants (e.g. SNPs) in future research.


Subject(s)
Vaccinium macrocarpon , Vaccinium vitis-idaea , Vaccinium vitis-idaea/genetics , Phylogeny , Vaccinium macrocarpon/genetics , Base Sequence , Fruit , North America
2.
Evolution ; 77(4): 1117-1130, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36790048

ABSTRACT

Chromosomal inversions are theorized to play an important role in adaptation by preventing recombination, but testing this hypothesis requires an understanding of the rate of inversion fixation. Here, we use chromosome-level whole-genome assemblies for 32 genera of plants to ask how fast inversions accumulate and what factors affect this rate. We find that on average species accumulate 4-25 inversions per million generations, but this rate is highly variable, and we find no correlation between sequence divergence or repeat content and the number of inversions or the proportion of genome that was inverted and only a small correlation with chromosome size. We also find that inversion regions are depleted for genes and enriched for TEs compared to the genomic background. This suggests that idiosyncratic forces, like natural selection and demography, are controlling how fast inversions fix.


Subject(s)
Chromosome Inversion , Recombination, Genetic , Humans , Chromosomes , Selection, Genetic , Genome, Plant
3.
Plant Commun ; 4(5): 100599, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37050879

ABSTRACT

Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.


Subject(s)
Genomics , Plants , Plants/genetics , Genome, Plant/genetics , Reproductive Isolation , Hybridization, Genetic
4.
Sci Total Environ ; 845: 157341, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35842164

ABSTRACT

Climate change is now a reality and is altering ecosystems, with Canada experiencing 2-4 times the global average rate of warming. This will have a critical impact on berry cultivation and horticulture. Enhancing our understanding of how wild and cultivated berries will perform under changing climates will be essential to mitigating impacts on ecosystems, culture and food security. Our objective was to predict the impact of climate change on habitat suitability of four berry producing Vaccinium species: two species with primarily northern distributions (V. uliginosum, V. vitis-idaea), one species with a primarily southern distribution (V. oxycoccos), and the commercially cultivated V. macrocarpon. We used the maximum entropy (Maxent) model and the CMIP6 shared socioeconomic pathways (SSPs) 126 and 585 projected to 2041-2060 and 2061-2080. Wild species showed a uniform northward progression and expansion of suitable habitat. Our modeling predicts that suitable growing regions for commercial cranberries are also likely to shift with some farms becoming unsuitable for the current varieties and other regions becoming more suitable for cranberry farms. Both V. macrocarpon and V. oxycoccos showed a high dependence on precipitation-associated variables. Vaccinium vitis-idaea and V. uliginosum had a greater number of variables with smaller contributions which may improve their resilience to individual climactic events. Future competition between commercial cranberry farms and wild berries in protected areas could lead to conflicts between agriculture and conservation priorities. New varieties of commercial berries are required to maintain current commercial berry farms.


Subject(s)
Fruit , Vaccinium macrocarpon , Agriculture , Climate Change , Ecosystem , Food Security , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL