Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Angew Chem Int Ed Engl ; 62(13): e202218655, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36719065

ABSTRACT

Asparagine-linked protein glycosylations (N-glycosylations) are one of the most abundant post-translational modifications and are essential for various biological phenomena. Herein, we describe the isolation, structural determination, and chemical synthesis of the N-glycan from the hyperthermophilic archaeon Thermococcus kodakarensis. The N-glycan from the organism possesses a unique structure including myo-inositol, which has not been found in previously characterized N-glycans. In this structure, myo-inositol is highly glycosylated and linked with a disaccharide unit through a phosphodiester. The straightforward synthesis of this glycan was accomplished through diastereoselective phosphorylation and phosphodiester construction by SN 2 coupling. Considering the early divergence of hyperthermophilic organisms in evolution, this study can be expected to open the door to approaching the primitive function of glycan modification at the molecular level.


Subject(s)
Thermococcus , Inositol/metabolism , Polysaccharides/metabolism
2.
Chemistry ; 28(61): e202201848, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-35880726

ABSTRACT

We have synthesized B-antigen-displaying dendrimers (16-mers) with different sizes and evaluated their affinity to their IgM antibody in order to investigate which design features lead to effective multivalency. Unexpectedly, the smallest dendrimer, which cannot chelate the multiple binding sites of IgM, clearly exhibited multivalency, together with an affinity similar to or higher than those of the larger dendrimers. These results indicate that the statistical rebinding model, which involves the rapid exchange of clustered glycans, significantly contributes to the multivalency of glycodendrimers. Namely, in the design of glycodendrimers, high-density glycan presentation to enhance statistical rebinding should be considered in addition to the ability to chelate multiple binding sites. This notion stands in contrast to the currently prevailing scientific consensus, which prioritizes the chelation model. This study thus provides new and important guidelines for molecular design of glycodendrimers.


Subject(s)
Dendrimers , Dendrimers/chemistry , Polysaccharides , Binding Sites
3.
J Org Chem ; 85(17): 11549-11559, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32786646

ABSTRACT

C60- and C100-dolichols were synthesized. A Z-selective Wittig reaction was achieved with high selectivity in a microflow system to realize the scalable supply of the Z-isoprene unit. An isoprene chain was efficiently elongated by an SN2-type coupling between allyl sulfone and allyl chloride using t-BuOK. These key reactions enabled the efficient syntheses of dolichols. This study will pave the way for the functional studies of dolichols.

SELECTION OF CITATIONS
SEARCH DETAIL