Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Oncol Rep ; 22(4): 805-13, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19724859

ABSTRACT

In breast cancer patients, primary chemotherapy is associated with the same survival benefits as adjuvant chemotherapy. Residual tumors represent a clinical challenge, as they may be resistant to additional cycles of the same drugs. Our aim was to identify differential transcripts expressed in residual tumors, after neoadjuvant chemotherapy, that might be related with tumor resistance. Hence, 16 patients with paired tumor samples, collected before and after treatment (4 cycles doxorubicin/cyclophosphamide, AC) had their gene expression evaluated on cDNA microarray slides containing 4,608 genes. Three hundred and eighty-nine genes were differentially expressed (paired Student's t-test, pFDR<0.01) between pre- and post-chemotherapy samples and among the regulated functions were the JNK cascade and cell death. Unsupervised hierarchical clustering identified one branch comprising exclusively, eight pre-chemotherapy samples and another branch, including the former correspondent eight post-chemotherapy samples and other 16 paired pre/post-chemotherapy samples. No differences in clinical and tumor parameters could explain this clustering. Another group of 11 patients with paired samples had expression of selected genes determined by real-time RT-PCR and CTGF and DUSP1 were confirmed more expressed in post- as compared to pre-chemotherapy samples. After neoadjuvant chemotherapy some residual samples may retain their molecular signature while others present significant changes in their gene expression, probably induced by the treatment. CTGF and DUSP1 overexpression in residual samples may be a reflection of resistance to further administration of AC regimen.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression/drug effects , Adult , Aged , Biomarkers, Tumor/genetics , Connective Tissue Growth Factor/biosynthesis , Connective Tissue Growth Factor/drug effects , Connective Tissue Growth Factor/genetics , Cyclophosphamide/administration & dosage , Doxorubicin/administration & dosage , Dual Specificity Phosphatase 1/biosynthesis , Dual Specificity Phosphatase 1/drug effects , Dual Specificity Phosphatase 1/genetics , Female , Gene Expression Profiling , Humans , MAP Kinase Kinase 4/metabolism , Middle Aged , Neoadjuvant Therapy , Neoplasm, Residual , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics
2.
Oncotarget ; 9(32): 22460-22479, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29854292

ABSTRACT

Breast cancer arising in very young patients may be biologically distinct; however, these tumors have been less well studied. We characterized a group of very young patients (≤ 35 years) for BRCA germline mutation and for somatic mutations in luminal (HER2 negative) breast cancer. Thirteen of 79 unselected very young patients were BRCA1/2 germline mutation carriers. Of the non-BRCA tumors, eight with luminal subtype (HER2 negative) were submitted for whole exome sequencing and integrated with 29 luminal samples from the COSMIC database or previous literature for analysis. We identified C to T single nucleotide variants (SNVs) as the most common base-change. A median of six candidate driver genes was mutated by SNVs in each sample and the most frequently mutated genes were PIK3CA, GATA3, TP53 and MAP2K4. Potential cancer drivers affected in the present non-BRCA tumors include GRHL2, PIK3AP1, CACNA1E, SEMA6D, SMURF2, RSBN1 and MTHFD2. Sixteen out of 37 luminal tumors (43%) harbored SNVs in DNA repair genes, such as ATR, BAP1, ERCC6, FANCD2, FANCL, MLH1, MUTYH, PALB2, POLD1, POLE, RAD9A, RAD51 and TP53, and 54% presented pathogenic mutations (frameshift or nonsense) in at least one gene involved in gene transcription. The differential biology of luminal early-age onset breast cancer needs a deeper genomic investigation.

SELECTION OF CITATIONS
SEARCH DETAIL