Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
Add more filters

Publication year range
1.
Clin Microbiol Rev ; 37(2): e0000423, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38551323

ABSTRACT

SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.


Subject(s)
Antifungal Agents , Scedosporium , Humans , Antifungal Agents/therapeutic use , Scedosporium/drug effects , Scedosporium/classification , Drug Resistance, Fungal , Mycoses/drug therapy , Mycoses/diagnosis , Mycoses/microbiology , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/diagnosis , Ascomycota/classification , Ascomycota/drug effects
2.
Clin Microbiol Rev ; 37(2): e0007423, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38602408

ABSTRACT

SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.


Subject(s)
Antifungal Agents , Drug Resistance, Fungal , Invasive Fungal Infections , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Humans , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/microbiology , Fungi/drug effects , Animals , Treatment Outcome
3.
PLoS Pathog ; 19(1): e1011025, 2023 01.
Article in English | MEDLINE | ID: mdl-36602962

ABSTRACT

Racial and ethnic identities, largely understood as social rather than biologic constructs, may impact risk for acquiring infectious diseases, including fungal infections. Risk factors may include genetic and immunologic differences such as aberrations in host immune response, host polymorphisms, and epigenomic factors stemming from environmental exposures and underlying social determinants of health. In addition, certain racial and ethnic groups may be predisposed to diseases that increase risk for fungal infections, as well as disparities in healthcare access and health insurance. In this review, we analyzed racial and ethnic identities as risk factors for acquiring fungal infections, as well as race and ethnicity as they relate to risk for severe disease from fungal infections. Risk factors for invasive mold infections such as aspergillosis largely appear related to environmental differences and underlying social determinants of health, although immunologic aberrations and genetic polymorphisms may contribute in some circumstances. Although black and African American individuals appear to be at high risk for superficial and invasive Candida infections and cryptococcosis, the reasons for this are unclear and may be related to underling social determinants of health, disparities in access to healthcare, and other socioeconomic disparities. Risk factors for all the endemic fungi are likely largely related to underlying social determinants of health, socioeconomic, and health disparities, although immunologic mechanisms likely play a role as well, particularly in disseminated coccidioidomycosis.


Subject(s)
Ethnicity , Mycoses , Humans , United States , White People , Hispanic or Latino , Risk Factors , Mycoses/epidemiology , Socioeconomic Factors
4.
Clin Microbiol Rev ; 36(3): e0001923, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37439685

ABSTRACT

Fungal endocarditis accounts for 1% to 3% of all infective endocarditis cases, is associated with high morbidity and mortality (>70%), and presents numerous challenges during clinical care. Candida spp. are the most common causes of fungal endocarditis, implicated in over 50% of cases, followed by Aspergillus and Histoplasma spp. Important risk factors for fungal endocarditis include prosthetic valves, prior heart surgery, and injection drug use. The signs and symptoms of fungal endocarditis are nonspecific, and a high degree of clinical suspicion coupled with the judicious use of diagnostic tests is required for diagnosis. In addition to microbiological diagnostics (e.g., blood culture for Candida spp. or galactomannan testing and PCR for Aspergillus spp.), echocardiography remains critical for evaluation of potential infective endocarditis, although radionuclide imaging modalities such as 18F-fluorodeoxyglucose positron emission tomography/computed tomography are increasingly being used. A multimodal treatment approach is necessary: surgery is usually required and should be accompanied by long-term systemic antifungal therapy, such as echinocandin therapy for Candida endocarditis or voriconazole therapy for Aspergillus endocarditis.


Subject(s)
Candidiasis , Endocarditis, Bacterial , Endocarditis , Mycoses , Humans , Mycoses/drug therapy , Endocarditis/diagnosis , Endocarditis/epidemiology , Endocarditis/therapy , Endocarditis, Bacterial/diagnosis , Antifungal Agents/therapeutic use , Candidiasis/diagnosis , Candida , Aspergillus
5.
Clin Infect Dis ; 78(2): 361-370, 2024 02 17.
Article in English | MEDLINE | ID: mdl-37691392

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) is a frequent superinfection in critically ill patients with COVID-19 and is associated with increased mortality rates. The increasing proportion of severely immunocompromised patients with COVID-19 who require mechanical ventilation warrants research into the incidence and impact of CAPA during the vaccination era. METHODS: We performed a retrospective, monocentric, observational study. We collected data from adult patients with severe COVID-19 requiring mechanical ventilation who were admitted to the intensive care unit (ICU) of University Hospitals Leuven, a tertiary referral center, between 1 March 2020 and 14 November 2022. Probable or proven CAPA was diagnosed according to the 2020 European Confederation for Medical Mycology/International Society for Human and Animal Mycology (ECMM/ISHAM) criteria. RESULTS: We included 335 patients. Bronchoalveolar lavage sampling was performed in 300 (90%), and CAPA was diagnosed in 112 (33%). The incidence of CAPA was 62% (50 of 81 patients) in European Organisation for Research and Treatment of Cancer (EORTC)/Mycosis Study Group Education and Research Consortium (MSGERC) host factor-positive patients, compared with 24% (62 of 254) in host factor-negative patients. The incidence of CAPA was significantly higher in the vaccination era, increasing from 24% (57 of 241) in patients admitted to the ICU before October 2021 to 59% (55 of 94) in those admitted since then. Both EORTC/MSGERC host factors and ICU admission in the vaccination era were independently associated with CAPA development. CAPA remained an independent risk factor associated with mortality risk during the vaccination era. CONCLUSIONS: The presence of EORTC/MSGERC host factors for invasive mold disease is associated with increased CAPA incidence and worse outcome parameters, and it is the main driver for the significantly higher incidence of CAPA in the vaccination era. Our findings warrant investigation of antifungal prophylaxis in critically ill patients with COVID-19.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Adult , Animals , Humans , COVID-19/complications , COVID-19/epidemiology , Critical Illness , Respiration, Artificial , Retrospective Studies , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/epidemiology , Immunocompromised Host
6.
Emerg Infect Dis ; 30(6): 1275-1278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782377

ABSTRACT

We investigated a cohort of 370 patients in Austria with hantavirus infections (7.8% ICU admission rate) and detected 2 cases (cumulative incidence 7%) of invasive pulmonary aspergillosis; 1 patient died. Hantavirus-associated pulmonary aspergillosis may complicate the course of critically ill patients who have hemorrhagic fever with renal syndrome.


Subject(s)
Critical Illness , Hantavirus Infections , Invasive Pulmonary Aspergillosis , Humans , Austria/epidemiology , Male , Invasive Pulmonary Aspergillosis/epidemiology , Invasive Pulmonary Aspergillosis/drug therapy , Female , Middle Aged , Hantavirus Infections/epidemiology , Hantavirus Infections/complications , Adult , Aged , Orthohantavirus
7.
J Clin Microbiol ; 62(6): e0147623, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38695528

ABSTRACT

Invasive mold infections (IMIs) are associated with high morbidity, particularly in immunocompromised patients, with mortality rates between 40% and 80%. Early initiation of appropriate antifungal therapy can substantially improve outcomes, yet early diagnosis remains difficult to establish and often requires multidisciplinary teams evaluating clinical and radiological findings plus supportive mycological findings. Universal digital high-resolution melting (U-dHRM) analysis may enable rapid and robust diagnoses of IMI. A universal fungal assay was developed for U-dHRM and used to generate a database of melt curve signatures for 19 clinically relevant fungal pathogens. A machine learning algorithm (ML) was trained to automatically classify these pathogen curves and detect novel melt curves. Performance was assessed on 73 clinical bronchoalveolar lavage samples from patients suspected of IMI. Novel curves were identified by micropipetting U-dHRM reactions and Sanger sequencing amplicons. U-dHRM achieved 97% overall fungal organism identification accuracy and a turnaround time of ~4 hrs. U-dHRM detected pathogenic molds (Aspergillus, Mucorales, Lomentospora, and Fusarium) in 73% of 30 samples classified as IMI, including mixed infections. Specificity was optimized by requiring the number of pathogenic mold curves detected in a sample to be >8 and a sample volume to be 1 mL, which resulted in 100% specificity in 21 at-risk patients without IMI. U-dHRM showed promise as a separate or combination diagnostic approach to standard mycological tests. U-dHRM's speed, ability to simultaneously identify and quantify clinically relevant mold pathogens in polymicrobial samples, and detect emerging opportunistic pathogens may aid treatment decisions, improving patient outcomes. IMPORTANCE: Improvements in diagnostics for invasive mold infections are urgently needed. This work presents a new molecular detection approach that addresses technical and workflow challenges to provide fast pathogen detection, identification, and quantification that could inform treatment to improve patient outcomes.


Subject(s)
Fungi , Lung Diseases, Fungal , Sensitivity and Specificity , Humans , Lung Diseases, Fungal/diagnosis , Lung Diseases, Fungal/microbiology , Fungi/genetics , Fungi/isolation & purification , Fungi/classification , Molecular Diagnostic Techniques/methods , Transition Temperature , Bronchoalveolar Lavage Fluid/microbiology , Machine Learning , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/microbiology
8.
Infection ; 52(1): 197-208, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37656348

ABSTRACT

BACKGROUND: We assessed the laboratory diagnosis and treatment of invasive fungal disease (IFD) in Italy to detect limitations and potential for improvement. METHODS: The survey was available online at www.clinicalsurveys.net/uc/IFI management capacity/, and collected variables such as (a) institution profile, (b) perceptions of IFD in the respective institution, (c) microscopy, (d) culture and fungal identification, (e) serology, (f) antigen detection, (g) molecular tests, (h) susceptibility testing and (i) therapeutic drug monitoring (TDM). RESULTS: The laboratory capacity study received responses from 49 Italian centres, with an equitable geographical distribution of locations. The majority of respondents (n = 36, 73%) assessed the occurrence of IFD as moderate-high, with Aspergillus spp. being the pathogen of highest concern, followed by Candida spp. and Mucorales. Although 46 (94%) of the institutions had access to microscopy, less than half of them performed direct microscopy on clinical specimens always when IFD was suspected. Cultures were available in all assessed laboratories, while molecular testing and serology were available in 41 (83%), each. Antigen detection tests and antifungal drugs were also generally accessible (> 90%) among the participating institutions. Nevertheless, access to TDM was limited (n = 31, 63%), with a significant association established between therapeutic drug monitoring availability and higher gross domestic product per capita. CONCLUSIONS: Apart from TDM, Italy is adequately prepared for the diagnosis and treatment of IFD, with no significant disparities depending on gross domestic product. Future efforts may need to focus on enhancing the availability and application of direct microscopic methods, as well as TDM, to promote optimal treatment and better patient outcomes.


Subject(s)
Invasive Fungal Infections , Laboratories , Humans , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/microbiology , Antifungal Agents/therapeutic use , Candida , Aspergillus
9.
Mycoses ; 67(6): e13756, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38886163

ABSTRACT

BACKGROUND: Serum galactomannan (GM) testing is essential for diagnosing invasive aspergillosis (IA), particularly in immunocompromised individuals. The global lack of on-site GM testing capacities necessitates cost-effective alternatives, such as .the clarus Aspergillus GM enzyme immunoassay prototype (clarus AGM prototype). METHODS: This single-centre, cross-sectional study compared the diagnostic performance of the clarus AGM prototype (IMMY, Norman, Oklahoma) with the serological gold standard (=Platelia AGM assay; Bio-Rad, Marnes-la-Cocquette, France). IA was classified according to modified 2020 EORTC/MSG consensus and 2024 FUNDICU criteria. In total, 300 prospectively (May-Dec 2023) and retrospectively (2012-2015) collected samples were included. RESULTS: Among 300 samples from 232 patients, 49 (16%) were classified as proven (n = 1) or probable IA (n = 48). In non-IA cases (n = 250), one patient was classified as possible IA. With the manufacturer recommended cut-off of ≥0.2, sensitivity and specificity of the clarus AGM prototype were 27% (13/49; 95% confidence interval [CI]: 15%-41%) and 99% (248/250; 95% CI: 97%-100%), respectively, while sensitivity and specificity were 78% and 79% when using the optimised Youden's cut-off of 0.0045 ODI. ROC curve analysis demonstrated an area under the curve (AUC) of 0.829 (95% CI: 0.760-0.898) for the clarus AGM prototype in distinguishing between proven/probable IA and non-IA. The AUC for the Platelia AGM was 0.951 (95% CI: 0.909-994). Spearman's correlation analysis showed a weak correlation between the two assays (0.382; p < .001). CONCLUSIONS: The weak correlation between the clarus AGM prototype and Platelia AGM highlights the need for further investigation into the clinical performance of the clarus AGM prototype, giving the different antigen epitopes addressed.


Subject(s)
Aspergillus , Galactose , Immunoenzyme Techniques , Invasive Pulmonary Aspergillosis , Mannans , Sensitivity and Specificity , Humans , Mannans/blood , Galactose/analogs & derivatives , Invasive Pulmonary Aspergillosis/diagnosis , Immunoenzyme Techniques/methods , Cross-Sectional Studies , Male , Middle Aged , Female , Aged , Retrospective Studies , Aspergillus/isolation & purification , Aspergillus/immunology , Adult , Prospective Studies , Antigens, Fungal/blood , Aged, 80 and over , Young Adult , ROC Curve
10.
Mycopathologia ; 189(1): 3, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38217742

ABSTRACT

Early after the beginning of the coronavirus disease 2019 (COVID-19)-pandemic, it was observed that critically ill patients in the intensive care unit (ICU) were susceptible to developing secondary fungal infections, particularly COVID-19 associated pulmonary aspergillosis (CAPA). Here we report our local experience on the impact of mold active antifungal prophylaxis on CAPA occurrence in critically ill COVID-19 patients. This is a monocentric, prospective cohort study including all consecutive patients with COVID-19 associated acute respiratory failure who were admitted to our local medical ICU. Based on the treating physician's discretion, patients may have received antifungal prophylaxis or not. All patients were retrospectively characterized as having CAPA according to the 2020 ECMM/ISHAM consensus definitions. Seventy-seven patients were admitted to our medical ICU during April 2020 and May 2021 and included in the study. The majority of patients received invasive-mechanical ventilation (61%). Fifty-three patients (68.8%) received posaconazole prophylaxis. Six cases of probable CAPA were diagnosed within clinical routine management. All six cases were diagnosed in the non-prophylaxis group. The incidence of CAPA in the overall study cohort was 0.57 events per 100 ICU days and 2.20 events per 100 ICU days in the non-prophylaxis group. No difference of cumulative 84-days survival could be observed between the two groups (p = 0.115). In this monocentric cohort, application of posaconazole prophylaxis in patients with COVID-19 associated respiratory failure did significantly reduce the rate of CAPA.


Subject(s)
COVID-19 , Coinfection , Pulmonary Aspergillosis , Humans , Antifungal Agents/therapeutic use , Critical Illness , Prospective Studies , Retrospective Studies , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/prevention & control , Intensive Care Units
11.
Mycopathologia ; 189(3): 41, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704761

ABSTRACT

BACKGROUND: The global prevalence of invasive fungal infections (IFI) is increasing, particularly within Intensive Care Units (ICU), where Candida spp. and Aspergillus spp. represent the most important pathogens. Diagnosis and management of IFIs becomes progressively challenging, with increasing antifungal resistance and the emergence of rare fungal species. Through a consensus survey focused on assessing current views on how IFI should be managed, the aim of this project was to identify challenges around diagnosing and managing IFIs in the ICU. The current status in different countries and perceived challenges to date amongst a multidisciplinary cohort of healthcare professionals involved in the care of IFI in the ICU was assessed. METHODS: Using a modified Delphi approach, an expert panel developed 44 Likert-scale statements across 6 key domains concerning patient screening and minimal standards for diagnosis of IFIs in ICU; initiation and termination of antifungal treatments and how to minimise their side effects and insights for future research on this topic. These were used to develop an online survey which was distributed on a convenience sampling basis utilising the subscriber list held by an independent provider (M3 Global). This survey was distributed to intensivists, infectious disease specialists, microbiologists and antimicrobial/ICU pharmacists within the UK, Germany, Spain, France and Italy. The threshold for consensus was set at 75%. RESULTS: A total of 335 responses were received during the five-month collection period. From these, 29/44 (66%) statements attained very high agreement (≥ 90%), 11/44 (25%) high agreement (< 90% and ≥ 75%), and 4/44 (9%) did not meet threshold for consensus (< 75%). CONCLUSION: The results outline the need for physicians to be aware of the local incidence of IFI and the associated rate of azole resistance in their ICUs. Where high clinical suspicion exists, treatment should start immediately and prior to receiving the results from any diagnostic test. Beta-D-glucan testing should be available to all ICU centres, with results available within 48 h to inform the cessation of empirical antifungal therapy. These consensus statements and proposed measures may guide future areas for further research to optimise the management of IFIs in the ICU.


Subject(s)
Antifungal Agents , Intensive Care Units , Invasive Fungal Infections , Humans , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/diagnosis , Antifungal Agents/therapeutic use , Europe , Surveys and Questionnaires , Consensus , Disease Management
12.
Mycopathologia ; 189(2): 24, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407673

ABSTRACT

OBJECTIVES: Invasive aspergillosis (IA) is a major cause of mortality in immunocompromised patients and it is difficult to diagnose because of the lack of reliable highly sensitive diagnostics. We aimed to identify circulating immunological markers that could be useful for an early diagnosis of IA. METHODS: We collected longitudinally serum samples from 33 cases with probable/proven IA and two matched control cohorts without IA (one with microbiological and clinical evidence of bacterial or viral non-fungal pneumonia and one without evidence of infection, all matched for neutropenia, primary underlying disease, and receipt of corticosteroids/other immunosuppressants) at a tertiary university hospital. In addition, samples from an independent cohort (n = 20 cases of proven/probable IA and 20 matched controls without infection) were obtained. A panel of 92 circulating proteins involved in inflammation was measured by proximity extension assay. A random forest model was used to predict the development of IA using biomarkers measured before diagnosis. RESULTS: While no significant differences were observed between IA cases and infected controls, concentrations of 30 inflammatory biomarkers were different between cases and non-infected controls, of which nine were independently replicated: PD-L1, MMP-10, Interleukin(IL)-10, IL-15RA, IL-18, IL-18R1, CDCP1, CCL19 and IL-17C. From the differential abundance analysis of serum samples collected more than 10 days before diagnosis and at diagnosis, increased IL-17C concentrations in IA patients were replicated in the independent cohort. CONCLUSIONS: An increased circulating concentration of IL-17C was detected both in the discovery and independent cohort, both at the time of diagnosis and in samples 10 days before the diagnosis of IA, suggesting it should be evaluated further as potential (early) biomarker of infection.


Subject(s)
Aspergillosis , Hematologic Neoplasms , Humans , Interleukin-17 , Hematologic Neoplasms/complications , Aspergillosis/diagnosis , Biological Assay , Hospitals, University , Antigens, Neoplasm , Cell Adhesion Molecules
13.
Antimicrob Agents Chemother ; 67(6): e0164522, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37162367

ABSTRACT

Candida auris is an emerging, multidrug-resistant fungal pathogen that causes refractory colonization and life-threatening, invasive nosocomial infections. The high proportion of C. auris isolates that display antifungal resistance severely limits treatment options. Combination therapies provide a possible strategy by which to enhance antifungal efficacy and prevent the emergence of further resistance. Therefore, we examined drug combinations using antifungals that are already in clinical use or are undergoing clinical trials. Using checkerboard assays, we screened combinations of 5-flucytosine and manogepix (the active form of the novel antifungal drug fosmanogepix) with anidulafungin, amphotericin B, or voriconazole against drug resistant and susceptible C. auris isolates from clades I and III. Fractional inhibitory concentration indices (FICI values) of 0.28 to 0.75 and 0.36 to 1.02 were observed for combinations of anidulafungin with manogepix or 5-flucytosine, respectively, indicating synergistic activity. The high potency of these anidulafungin combinations was confirmed using live-cell microfluidics-assisted imaging of the fungal growth. In summary, combinations of anidulafungin with manogepix or 5-flucytosine show great potential against both resistant and susceptible C. auris isolates.


Subject(s)
Antifungal Agents , Flucytosine , Antifungal Agents/pharmacology , Anidulafungin/pharmacology , Flucytosine/pharmacology , Candida auris , Candida , Microbial Sensitivity Tests
14.
J Clin Microbiol ; 61(3): e0185922, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36809121

ABSTRACT

Timely diagnosis remains an unmet need in non-neutropenic patients at risk for aspergillosis, including those with COVID-19-associated pulmonary aspergillosis (CAPA), which in its early stages is characterized by tissue-invasive growth of the lungs with limited angioinvasion. Currently available mycological tests show limited sensitivity when testing blood specimens. Metagenomic next-generation sequencing (mNGS) to detect microbial cell-free DNA (mcfDNA) in plasma might overcome some of the limitations of conventional diagnostics. A two-center cohort study involving 114 COVID-19 intensive care unit patients evaluated the performance of plasma mcfDNA sequencing for the diagnosis of CAPA. Classification of CAPA was performed using the European Confederation for Medical Mycology (ECMM)/International Society for Human and Animal Mycoses (ISHAM) criteria. A total of 218 plasma samples were collected between April 2020 and June 2021 and tested for mcfDNA (Karius test). Only 6 patients were classified as probable CAPA, and 2 were classified as possible, while 106 patients did not fulfill CAPA criteria. The Karius test detected DNA of mold pathogens in 12 samples from 8 patients, including Aspergillus fumigatus in 10 samples from 6 patients. Mold pathogen DNA was detected in 5 of 6 (83% sensitivity) cases with probable CAPA (A. fumigatus in 8 samples from 4 patients and Rhizopus microsporus in 1 sample), while the test did not detect molds in 103 of 106 (97% specificity) cases without CAPA. The Karius test showed promising performance for diagnosis of CAPA when testing plasma, being highly specific. The test detected molds in all but one patient with probable CAPA, including cases where other mycological tests from blood resulted continuously negative, outlining the need for validation in larger studies.


Subject(s)
Aspergillosis , COVID-19 , COVID-19/complications , Aspergillosis/diagnosis , Aspergillosis/microbiology , Humans , Middle Aged , Cell-Free Nucleic Acids/isolation & purification , Male , Female
15.
J Clin Microbiol ; 61(11): e0087323, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37882528

ABSTRACT

The rapid pace of name changes of medically important fungi is creating challenges for clinical laboratories and clinicians involved in patient care. We describe two sources of name change which have different drivers, at the species versus the genus level. Some suggestions are made here to reduce the number of name changes. We urge taxonomists to provide diagnostic markers of taxonomic novelties. Given the instability of phylogenetic trees due to variable taxon sampling, we advocate to maintain genera at the largest possible size. Reporting of identified species in complexes or series should where possible comprise both the name of the overarching species and that of the molecular sibling, often cryptic species. Because the use of different names for the same species will be unavoidable for many years to come, an open access online database of the names of all medically important fungi, with proper nomenclatural designation and synonymy, is essential. We further recommend that while taxonomic discovery continues, the adaptation of new name changes by clinical laboratories and clinicians be reviewed routinely by a standing committee for validation and stability over time, with reference to an open access database, wherein reasons for changes are listed in a transparent way.


Subject(s)
Fungi , Humans , Phylogeny , Databases, Factual , Fungi/genetics
16.
J Antimicrob Chemother ; 78(12): 2902-2908, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37856679

ABSTRACT

BACKGROUND: In critically ill patients with extracorporeal membrane oxygenation (ECMO) attainment of target concentration of isavuconazole is delayed using the routine loading dose. OBJECTIVES: We investigated the influence of increasing the first loading dose of isavuconazole on plasma concentrations in critically ill patients treated with ECMO. METHODS: Fifteen patients were included in this study, and isavuconazole concentrations were measured at several timepoints starting 2 h after the first isavuconazole dose up to 168 h. By interim analysis of isavuconazole concentrations and meticulous screening for adverse events, the first loading dose was stepwise increased from 200 to 300 mg, and finally to 400 mg. RESULTS: Seven of 15 patients (47%) received standard isavuconazole loading dosage with 200 mg as the first dose, 3/15 (20%) received 300 mg, and 5/15 (33%) received 400 mg isavuconazole as the first dose, followed by subsequent standard dosing in all patients. In patients receiving 400 mg as the first dose all isavuconazole concentrations were significantly higher at timepoints up to the first 24 h, resulting in higher proportions of isavuconazole concentrations ≥1 mg/L compared with patients with other loading dosages. In timepoints ≥24 h after isavuconazole initiation all patient groups reached comparable plasma concentrations, regardless of the first loading dose regimen. We did not observe concentrations above ≥5 mg/L or any adverse events related to isavuconazole administration. CONCLUSIONS: In critically ill patients with ECMO the 400 mg loading dose of isavuconazole resulted in immediate median isavuconazole plasma concentrations ≥1 mg/L and remained constant above this threshold after the first loading dose.


Subject(s)
Extracorporeal Membrane Oxygenation , Humans , Extracorporeal Membrane Oxygenation/methods , Critical Illness/therapy , Nitriles , Pyridines
17.
J Antimicrob Chemother ; 78(8): 1813-1826, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37311136

ABSTRACT

Patients with haematological malignancies (HM) are at high risk of developing invasive fungal disease (IFD) with high morbidity and attributable mortality. We reviewed data published until September 2021 to update the 2017 antifungal prophylaxis recommendations of the German Society of Haematology and Medical Oncology (DGHO). The strong recommendation to administer antifungal prophylaxis in patients with HM with long-lasting neutropenia, i.e. <500 cells/µL for >7 days remains unchanged. Posaconazole remains the drug of choice for mould-active prophylaxis in these patients. Novel treatment options in HM, such as CAR-T-cell treatment or novel targeted therapies for acute myeloid leukaemia (AML) were considered, however, data are insufficient to give general recommendations for routine antifungal prophylaxis in these patients. Major changes regarding specific recommendations compared to the 2017 edition are the now moderate instead of mild support for the recommendations of isavuconazole and voriconazole. Furthermore, published evidence on micafungin allows recommending it at moderate strength for its use in HM. For the first time we included recommendations for non-pharmaceutical measures regarding IFD, comprising the use of high-efficiency particulate air (HEPA) filters, smoking, measures during construction work and neutropenic diets. We reviewed the impact of antifungal prophylaxis with triazoles on drug-drug interactions with novel targeted therapies that are metabolized via cytochrome p450 where triazoles inhibit CYP3A4/5. The working group recommends reducing the dose of venetoclax when used concomitantly with strong CYP3A4 inhibiting antifungals. Furthermore, we reviewed data on the prophylactic use of novel antifungal agents. Currently there is no evidence to support their use in a prophylactic setting in clinical practice.


Subject(s)
Communicable Diseases , Hematologic Neoplasms , Hematology , Invasive Fungal Infections , Humans , Antifungal Agents/therapeutic use , Cytochrome P-450 CYP3A , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/prevention & control , Invasive Fungal Infections/microbiology , Communicable Diseases/drug therapy , Hematologic Neoplasms/complications , Hematologic Neoplasms/drug therapy , Medical Oncology , Triazoles/therapeutic use
18.
Liver Int ; 43(9): 1975-1983, 2023 09.
Article in English | MEDLINE | ID: mdl-37334864

ABSTRACT

BACKGROUND & AIMS: On a global scale, liver cirrhosis is attributable to ~1 million deaths per year. This systemic disease comes along with diverse sequelae, including microbiota alterations, increased gut permeability and translocation of microbial components into the systemic circulation. Alongside the extensively studied influence of bacterial translocation and its host-pathogen interactions, far less is known about the role and impact of fungal components once having crossed the intestinal barrier. METHODS: Including 70 patients with different aetiologies of liver cirrhosis, we investigated the relationship between fungal translocation, measured by 1,3-ß-D-glucan (BDG), and biomarkers of gut integrity, inflammation and severity/outcome of liver disease. RESULTS: Patients with cirrhosis Child-Pugh class (CPC)-B were more likely to have positive serum BDG (aOR 5.4, 95% CI 1.2-25.2) compared to patients with cirrhosis CPC-A. BDG showed a moderate positive correlation with several markers of inflammation (sCD206, sCD163, Interleukin 8, interferon-gamma-induced protein). Mortality differed significantly between patients with positive versus negative BDG (log-rank test, p = 0.015). The multivariable Cox regression model yielded an aHR of 6.8 (95% CI 1.8-26.3). DISCUSSION: We observed trends for increased fungal translocation depending on the severity of liver cirrhosis, an association of BDG with an inflammatory environment and the adverse effects of BDG on disease outcome. In order to gain more in-depth knowledge about (fungal-)dysbiosis and its detrimental consequences in the setting of liver cirrhosis, these trends need to be studied in more detail including prospective sequential testing in larger cohorts together with mycobiome analyses. This will further elucidate complex host-pathogen interactions and potentially introduce points of application for therapeutic interventions.


Subject(s)
Glucans , beta-Glucans , Humans , Pilot Projects , Prospective Studies , Liver Cirrhosis/complications , Biomarkers , Inflammation
19.
AIDS Care ; 35(5): 714-718, 2023 05.
Article in English | MEDLINE | ID: mdl-34839750

ABSTRACT

ABSTRACTThe objective of this study was to determine hospital costs and revenue of universal opt-out HIV ED screening. An electronic medical record (EMR)-directed, automated ED screening program was instituted at an academic medical center in San Diego, California. A base model calculated net income in US dollars for the hospital by comparing annual testing costs with reimbursements using payor mixes and cost variables. To account for differences in payor mixes, testing costs, and reimbursement rates across hospitals in the US, we performed a probabilistic sensitivity analysis. The base model included a total of 12,513 annual 4th generation HIV tests with the following payor mix: 18% Medicare, 9% MediCal, 28% commercial and 8% self-payers, with the remainder being capitated contracts. The base model resulted in a net profit for the hospital. In the probabilistic sensitivity analysis, universal 4th generation HIV screening resulted in a net profit for the hospital in 81.9% of simulations. Universal 4th generation opt-out HIV screening in EDs resulted in a net profit to an academic hospital. Sensitivity analysis indicated that ED HIV screening results in a net-profit for the majority of simulations, with higher proportions of self-payers being the major predictor of a net loss.


Subject(s)
HIV Infections , Medicare , Aged , Humans , United States , HIV Infections/diagnosis , Income , Hospitals , Emergency Service, Hospital
20.
Mycoses ; 66(11): 941-952, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37551043

ABSTRACT

COVID-19-associated pulmonary aspergillosis (CAPA) remains a high mortality mycotic infection throughout the pandemic, and glucocorticoids (GC) may be its root cause. Our aim was to evaluate the effect of systemic GC treatment on the development of CAPA. We systematically searched the PubMed, Google Scholar, Scopus and Embase databases to collect eligible studies published until 31 December 2022. The pooled outcome of CAPA development was calculated as the log odds ratio (LOR) with 95% confidence intervals (CI) using a random effect model. A total of 21 studies with 5174 patients were included. Of these, 20 studies with 4675 patients consisting of 2565 treated with GC but without other immunomodulators (GC group) and 2110 treated without GC or other immunomodulators (controls) were analysed. The pooled LOR of CAPA development was higher for the GC group than for the controls (0.54; 95% CI: 0.22, 0.86; p < .01). In the subgroups, the pooled LOR was higher for high-dose GC (0.90; 95% CI: 0.17, 1.62: p = .01) and dexamethasone (0.71; 95% CI: 0.35, 1.07; p < .01) but had no significant difference for low-dose GC (0.41; 95% CI: -0.07, 0.89; p = .09), and non-dexamethasone GC (0.21; 95% CI: -0.36, 0.79; p = .47), treated patients versus controls. GC treatment increases the risk of CAPA development, and this risk is particularly associated with the use of high-dose GC or dexamethasone treatment.


Subject(s)
COVID-19 , Pulmonary Aspergillosis , Humans , COVID-19/complications , Databases, Factual , Dexamethasone/adverse effects , Glucocorticoids/adverse effects , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL