Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928283

ABSTRACT

Epidemiological data suggest that moderate hyperoxemia may be associated with an improved outcome after traumatic brain injury. In a prospective, randomized investigation of long-term, resuscitated acute subdural hematoma plus hemorrhagic shock (ASDH + HS) in 14 adult, human-sized pigs, targeted hyperoxemia (200 < PaO2 < 250 mmHg vs. normoxemia 80 < PaO2 < 120 mmHg) coincided with improved neurological function. Since brain perfusion, oxygenation and metabolism did not differ, this post hoc study analyzed the available material for the effects of targeted hyperoxemia on cerebral tissue markers of oxidative/nitrosative stress (nitrotyrosine expression), blood-brain barrier integrity (extravascular albumin accumulation) and fluid homeostasis (oxytocin, its receptor and the H2S-producing enzymes cystathionine-ß-synthase and cystathionine-γ-lyase). After 2 h of ASDH + HS (0.1 mL/kgBW autologous blood injected into the subdural space and passive removal of 30% of the blood volume), animals were resuscitated for up to 53 h by re-transfusion of shed blood, noradrenaline infusion to maintain cerebral perfusion pressure at baseline levels and hyper-/normoxemia during the first 24 h. Immediate postmortem, bi-hemispheric (i.e., blood-injected and contra-lateral) prefrontal cortex specimens from the base of the sulci underwent immunohistochemistry (% positive tissue staining) analysis of oxidative/nitrosative stress, blood-brain barrier integrity and fluid homeostasis. None of these tissue markers explained any differences in hyperoxemia-related neurological function. Likewise, hyperoxemia exerted no deleterious effects.


Subject(s)
Brain , Hematoma, Subdural, Acute , Shock, Hemorrhagic , Animals , Swine , Hematoma, Subdural, Acute/metabolism , Hematoma, Subdural, Acute/etiology , Hematoma, Subdural, Acute/pathology , Shock, Hemorrhagic/metabolism , Brain/metabolism , Brain/pathology , Blood-Brain Barrier/metabolism , Immunohistochemistry , Oxidative Stress , Resuscitation/methods , Disease Models, Animal , Oxygen/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism
2.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139121

ABSTRACT

Chronic heart failure is associated with reduced myocardial ß-adrenergic receptor expression and mitochondrial function. Since these data coincide with increased plasma catecholamine levels, we investigated the relation between myocardial ß-receptor expression and mitochondrial respiratory activity under conditions of physiological catecholamine concentrations. This post hoc analysis used material of a prospective randomized, controlled study on 12 sexually mature (age 20-24 weeks) Early Life Stress or control pigs (weaning at day 21 and 28-35 after birth, respectively) of either sex. Measurements in anesthetized, mechanically ventilated, and instrumented animals comprised serum catecholamine (liquid-chromatography/tandem-mass-spectrometry) and 8-isoprostane levels, whole blood superoxide anion concentrations (electron spin resonance), oxidative DNA strand breaks (tail moment in the "comet assay"), post mortem cardiac tissue mitochondrial respiration, and immunohistochemistry (ß2-adrenoreceptor, mitochondrial respiration complex, and nitrotyrosine expression). Catecholamine concentrations were inversely related to myocardial mitochondrial respiratory activity and ß2-adrenoceptor expression, whereas there was no relation to mitochondrial respiratory complex expression. Except for a significant, direct, non-linear relation between DNA damage and noradrenaline levels, catecholamine concentrations were unrelated to markers of oxidative stress. The present study suggests that physiological variations of the plasma catecholamine concentrations, e.g., due to physical and/or psychological stress, may affect cardiac ß2-adrenoceptor expression and mitochondrial respiration.


Subject(s)
Catecholamines , Respiration, Artificial , Animals , Mitochondria, Heart/metabolism , Prospective Studies , Receptors, Adrenergic, beta/metabolism , Swine
3.
Arch Psychiatr Nurs ; 44: 38-45, 2023 06.
Article in English | MEDLINE | ID: mdl-37197861

ABSTRACT

AIM: The aim of this study is to evaluate a brief positive psychological intervention with regard to the mental health of nursing staff in German hospitals. It addresses the question of how positive-psychological online exercises should be designed. BACKGROUND: Nurses in hospitals are known to suffer from mental strain and risk depressive as well as anxiety disorders. The covid-19-pandemic leads to a further aggravation of the situation. Opposed to that, positive psychological interventions can increase resilience by promoting self-management competences and mental strength. RESEARCH METHODS: A 90 min positive-psychological workshop was conducted with six nurses who worked in German hospitals. It consisted of imparting knowledge on positive psychology and learning different positive psychological practices. Afterwards, guideline-based interviews were conducted with six nurses. The outcomes of interest were how the intervention was evaluated, to what extent the intervention led to a reflection and a promotion of self-management competences and whether it allowed the participants to transfer the learnings into everyday life. RESULTS: The intervention led to a reflection of the application competence of positive-psychological techniques by the participating nurses. A promotion of the competences could not be reached. Especially the reflection and promotion of humour competence manifested itself as difficult. CONCLUSION: Despite its short-term nature, the online intervention resulted in a reflection of the nurses' application competence of positive psychology indicating its resource-promoting potential. Follow-up exercises or peer groups should be used for further development, while a training of humour competence might be part of a separate intervention.


Subject(s)
COVID-19 , Internet-Based Intervention , Nursing Staff , Humans , Nursing Staff/psychology , Mental Health , Learning
4.
FASEB J ; 35(12): e22038, 2021 12.
Article in English | MEDLINE | ID: mdl-34748229

ABSTRACT

Abdominal trauma (AT) is of major global importance, particularly with the increased potential for civil, terroristic, and military trauma. The injury pattern and systemic consequences of blunt abdominal injuries are highly variable and frequently underestimated or even missed, and the pathomechanisms remain still poorly understood. Therefore, we investigated the temporal-spatial organ and immune response after a standardized blast-induced blunt AT. Anesthetized mice were exposed to a single blast wave centered on the epigastrium. At 2, 6, or 24 h after trauma, abdominal organ damage was assessed macroscopically, microscopically, and biochemically. A higher degree of trauma severity, determined by a reduction of the distance between the epigastrium and blast inductor, was reflected by a reduced survival rate. The hemodynamic monitoring during the first 120 min after AT revealed a decline in the mean arterial pressure within the first 80 min, whereas the heart rate remained quite stable. AT induced a systemic damage and inflammatory response, evidenced by elevated HMGB-1 and IL-6 plasma levels. The macroscopic injury pattern of the abdominal organs (while complex) was consistent, with the following frequency: liver > pancreas > spleen > left kidney > intestine > right kidney > others > lungs and was reflected by microscopic liver and pancreas damages. Plasma levels of organ dysfunction markers increased during the first 6 h after AT and subsequently declined, indicating an early, temporal impairment of the function on a multi-organ level. The established highly reproducible murine blunt AT, with time- and trauma-severity-dependent organ injury patterns, systemic inflammatory response, and impairment of various organ functions, reflects characteristics of human AT. In the future, this model may help to study the complex immuno-pathophysiological consequences and innovative therapeutic approaches after blunt AT.


Subject(s)
Abdominal Injuries/complications , Acute Kidney Injury/pathology , Blast Injuries/complications , Liver/pathology , Multiple Trauma/complications , Pancreas/pathology , Acute Kidney Injury/etiology , Animals , Liver/injuries , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Pancreas/injuries , Pancreas/metabolism
5.
Br J Anaesth ; 128(5): 864-873, 2022 05.
Article in English | MEDLINE | ID: mdl-35131096

ABSTRACT

BACKGROUND: Calcitonin gene-related peptide (CGRP) and procalcitonin, which are overexpressed in sepsis, exert distinct immunomodulatory effects mediated through the CGRP receptor. The CGRP receptor antagonist olcegepant improves survival in murine sepsis. This study evaluated whether CGRP receptor antagonism is similarly beneficial in a porcine model of polymicrobial sepsis. METHODS: We conducted a prospective randomised, controlled, investigator-blinded trial in adult pigs of either sex, that were anaesthetised and ventilated before sepsis was induced by polymicrobial (autologous) faecal peritonitis. After the onset of early septic shock (systolic blood pressure <90 mm Hg or >10% decline from baseline MAP), pigs were resuscitated (i.v. fluid/antibiotics/vasopressors) and randomised to receive either i.v. olcegepant (n=8) or vehicle control (n=8). The primary outcome was time to death, euthanasia required up to 72 h after surgery (according to predefined severe cardiorespiratory failure), or both. Secondary outcomes included haemodynamic changes, and systemic as well as organ inflammation (mRNA expression). RESULTS: Septic shock developed 8.7 h (inter-quartile range, 5.8-11.1 h) after the onset of faecal peritonitis. Olcegepant worsened survival, with 6/8 pigs randomised to the control group surviving 72.0 h (50.9-72.0 h), compared with 3/8 pigs receiving olcegepant surviving 51.3 h (12.5-72.0 h; P=0.01). At 48 h, lower MAP and higher cardiac output occurred in pigs receiving olcegepant. Cardiac, hepatic, and renal injury was not different between pigs randomised to receive olcegepant or vehicle. Olcegepant reduced mRNA expression of several inflammation-related cytokines and CD68+ macrophages in liver but not in lung tissue. CONCLUSIONS: CGRP receptor antagonism with olcegepant was not beneficial in this porcine model of polymicrobial sepsis, which closely mimics human sepsis.


Subject(s)
Peritonitis , Sepsis , Shock, Septic , Animals , Calcitonin Gene-Related Peptide Receptor Antagonists , Humans , Mice , Peritonitis/drug therapy , Prospective Studies , RNA, Messenger , Receptors, Calcitonin Gene-Related Peptide/metabolism , Sepsis/drug therapy , Shock, Septic/drug therapy , Swine
6.
Protein Expr Purif ; 184: 105878, 2021 08.
Article in English | MEDLINE | ID: mdl-33812004

ABSTRACT

Smad8 is a transcriptional regulator that participates in the intracellular signaling pathway of the transforming growth factor-ß (TGF-ß) family. Full-length Smad8 is an inactive protein in the absence of ligand stimulation. The expression of a truncated version of the protein lacking the MH1 domain (cSmad8) revealed constitutive activity in genetically engineered mesenchymal stem cells and, in combination with BMP-2, exhibited a tendon cell-inducing potential. To further explore function and applicability of Smad8 in regenerative medicine recombinant production is required. Herein, we further engineered cSmad8 to include the transactivation signal (TAT) of the human immunodeficiency virus (HIV) to allow internalization into cells. TAT-hcSmad8 was produced in endotoxin-free ClearColi® BL21 (DE3), refolded from inclusion bodies (IBs) and purified by Heparin chromatography. Analysis of TAT-hcSmad8 by thermal shift assay revealed the formation of a hydrophobic core. The presence of mixed α-helixes and ß-sheets, in line with theoretical models, was proven by circular dichroism. TAT-hcSmad8 was successfully internalized by C3H10T1/2 cells, where it was mainly found in the cytoplasm and partially in the nucleus. Finally, it was shown that TAT-hcSmad8 exhibited biological activity in C3H10T1/2 cells after co-stimulation with BMP-2.


Subject(s)
Escherichia coli , Inclusion Bodies , Protein Refolding , Smad8 Protein , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Inclusion Bodies/chemistry , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Smad8 Protein/biosynthesis , Smad8 Protein/chemistry , Smad8 Protein/genetics , Smad8 Protein/isolation & purification
7.
Mol Cell Biochem ; 476(10): 3655-3670, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34052945

ABSTRACT

As a response to pro-inflammatory signals mesenchymal stem cells (MSCs) secrete agents and factors leading to lymphocyte recruitment, counteracting inflammation, and stimulating immunosuppression. On a molecular level, the signalling mediator TGF-ß-activated kinase 1 (TAK1) is activated by many pro-inflammatory signals, plays a critical role in inflammation and regulates innate and adaptive immune responses as well. While the role of TAK1 as a signalling factor promoting inflammation is well documented, we also considered a role for TAK1 in anti-inflammatory actions exerted by activated MSCs. We, therefore, investigated the capacity of lipopolysaccharide (LPS)-treated murine MSCs with lentivirally modulated TAK1 expression levels to recruit lymphocytes. TAK1 downregulated by lentiviral vectors expressing TAK1 shRNA in murine MSCs interfered with the capacity of murine MSCs to chemoattract lymphocytes, indeed. Analysing a pool of 84 secreted factors we found that among 26 secreted cytokines/factors TAK1 regulated expression of one cytokine in LPS-activated murine MSCs in particular: interleukin-6 (IL-6). IL-6 in LPS-treated MSCs was responsible for lymphocyte recruitment as substantiated by neutralizing antibodies. Our studies, therefore, suggest that in LPS-treated murine MSCs the inflammatory signalling mediator TAK1 may exert anti-inflammatory properties via IL-6.


Subject(s)
Interleukin-6/immunology , Lipopolysaccharides/pharmacology , Lymphocytes/immunology , MAP Kinase Kinase Kinases/immunology , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/immunology , Animals , HEK293 Cells , Humans , Interleukin-6/genetics , MAP Kinase Kinase Kinases/genetics , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Mice
8.
Cytotherapy ; 22(11): 653-668, 2020 11.
Article in English | MEDLINE | ID: mdl-32855067

ABSTRACT

BACKGROUND AIMS: Mesenchymal stroma/stem-like cells (MSCs) are a popular cell source and hold huge therapeutic promise for a broad range of possible clinical applications. However, to harness their full potential, current limitations in harvesting, expansion and characterization have to be overcome. These limitations are related to the heterogeneity of MSCs in general as well as to inconsistent experimental protocols. Here we aim to compare in vitro methods to facilitate comparison of MSCs generated from various tissues. METHODS: MSCs from 3 different tissues (bone marrow, dental pulp, adipose tissue), exemplified by cells from 3 randomly chosen donors per tissue, were systematically compared with respect to their in vitro properties after propagation in specific in-house standard media, as established in the individual laboratories, or in the same commercially available medium. RESULTS: Large differences were documented with respect to the expression of cell surface antigens, population doubling times, basal expression levels of 5 selected genes and osteogenic differentiation. The commercial medium reduced differences in these parameters with respect to individual human donors within tissue and between tissues. The extent, size and tetraspanin composition of extracellular vesicles were also affected. CONCLUSIONS: The results clearly demonstrate the extreme heterogeneity of MSCs, which confirms the problem of reproducibility of results, even when harmonizing experimental conditions, and questions the significance of common parameters for MSCs from different tissues in vitro.


Subject(s)
Culture Media/pharmacology , Mesenchymal Stem Cells/cytology , Organ Specificity , Adipose Tissue/cytology , Antigens, Surface/metabolism , Biomarkers/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Calcium/metabolism , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dental Pulp/cytology , Extracellular Vesicles/drug effects , Extracellular Vesicles/metabolism , Gene Expression Regulation/drug effects , Humans , Mesenchymal Stem Cells/drug effects , Organ Specificity/drug effects , Osteogenesis/drug effects , Reproducibility of Results , Tetraspanins/metabolism , Tissue Donors
9.
Pharmacol Res ; 151: 104536, 2020 01.
Article in English | MEDLINE | ID: mdl-31734346

ABSTRACT

Controversial data are available on hydrogen sulfide (H2S) during hemorrhage and resuscitation, depending on timing, dosing, mode of application, and the H2S donor used. Sodium thiosulfate (Na2S2O3) is a recognized drug devoid of major side effects, which attenuated murine acute lung injury and cerebral ischemia/reperfusion injury. Therefore, we tested the hypothesis whether Na2S2O3 would mitigate organ dysfunction in porcine hemorrhage-and-resuscitation. We studied animals with pre-existing coronary artery disease because of the reduced coronary arterial expression of the H2S producing enzyme cystathionine-γ-lyase (CSE) in this prospective, randomized, controlled, blinded experimental study. 20 anesthetized and instrumented pigs underwent 3 h of hemorrhage (removal of 30 % of the blood volume and subsequent titration of mean arterial pressure to 40 mmHg). Resuscitation (72 h) comprised re-transfusion of shed blood, crystalloids, and continuous i.v. norepinephrine. Animals randomly received vehicle or Na2S2O3 (0.1 g·kg-1 h-1) for 24 h. Before, at the end of and every 24 h after shock, hemodynamics, metabolism, blood gases, lung, heart, kidney, and liver function and injury were evaluated together with cytokines and parameters of oxidative and nitrosative stress. Immediate post mortem lung, kidney, heart, and liver specimen were analyzed for marker proteins of inflammation and oxidative and nitrosative stress and mitochondrial respiratory activity in the heart, kidney, and liver. Immuno-histochemical analysis comprised lung extra-vascular albumin accumulation, nitrotyrosine formation, and CSE and glucocorticoid receptor (GCR) expression. Na2S2O3 significantly attenuated shock-induced impairment of lung mechanics and gas exchange (plateau and positive end-expiratory pressure at 72 h p = 0.0006/p = 0.0264; Horovitz index at 48 h p = 0.0261), which coincided with a higher tissue GCR expression (p = 0.0415). During resuscitation from hemorrhagic shock Na2S2O3 attenuated shock-induced acute lung injury in co-morbid swine, most likely due to a GCR expression related mechanism.


Subject(s)
Antioxidants/therapeutic use , Atherosclerosis/complications , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/drug therapy , Thiosulfates/therapeutic use , Animals , Antioxidants/administration & dosage , Atherosclerosis/pathology , Coronary Artery Disease/complications , Coronary Artery Disease/pathology , Female , Male , Random Allocation , Resuscitation , Shock, Hemorrhagic/pathology , Swine , Thiosulfates/administration & dosage
10.
BMC Ophthalmol ; 20(1): 370, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32933506

ABSTRACT

BACKGROUND: To assess the functional outcomes after combined iris and intraocular lens (IOL) repair in aniridia patients. METHODS: Retrospective observational study in 59 aniridic and aphakic eyes for ArtificialIris (AI) and IOL reconstruction. The iris prostheses were placed together with the IOL in the capsular bag using an injection system or were fixed by transscleral suturing of the IOL and AI. The primary outcomes measured were visual acuity, contrast and glare sensitivity (Pelli-Robson chart for photopic and dark adaptometer for mesopic conditions), intraocular pressure, endothelial cell density (ECD) and patient impairment. RESULTS: Blunt trauma (37 eyes) and penetrating injuries (16 eyes) were observed more frequently than congenital aniridia (1 eye), iatrogenic causes (1 eye), aniridic state after severe iritis (2 eyes) or iris tumor (2 eyes). Monocular CDVA improved significantly (p < 0.0001) from median 0.7 logMAR (0.0-1.98) to 0.3 logMAR (- 0.08-2.0). Median pupillary area could significantly (p < 0.0001) be reduced by 79.3% from 51.27 mm2 (17.91 to 98.23) to 8.81 mm2 (4.16 to 8.84). Median ECD decreased from 2646.0 mm2 to 2497.5 mm2 (p = 0.007). Contrast and glare sensitivity improved significantly (p = 0.008) in photopic light conditions from 0.9 (0.0-1.95) to 1.35 (0.0-1.8). Patients reported to be highly satisfied with the functional improvement. CONCLUSION: The flexible ArtificialIris seems to be a safe and effective iris prosthesis in combination with an IOL having functionally and cosmetically exceptional reconstruction options.


Subject(s)
Aniridia , Aphakia , Lenses, Intraocular , Aniridia/surgery , Aphakia/surgery , Humans , Iris/surgery , Lens Implantation, Intraocular
11.
Int J Mol Sci ; 21(15)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707785

ABSTRACT

Musculoskeletal dysfunctions are highly prevalent due to increasing life expectancy. Consequently, novel solutions to optimize treatment of patients are required. The current major research focus is to develop innovative concepts for single tissues. However, interest is also emerging to generate applications for tissue transitions where highly divergent properties need to work together, as in bone-cartilage or bone-tendon transitions. Finding medical solutions for dysfunctions of such tissue transitions presents an added challenge, both in research and in clinics. This review aims to provide an overview of the anatomical structure of healthy adult entheses and their development during embryogenesis. Subsequently, important scientific progress in restoration of damaged entheses is presented. With respect to enthesis dysfunction, the review further focuses on inflammation. Although molecular, cellular and tissue mechanisms during inflammation are well understood, tissue regeneration in context of inflammation still presents an unmet clinical need and goes along with unresolved biological questions. Furthermore, this review gives particular attention to the potential role of a signaling mediator protein, transforming growth factor beta-activated kinase-1 (TAK1), which is at the node of regenerative and inflammatory signaling and is one example for a less regarded aspect and potential important link between tissue regeneration and inflammation.


Subject(s)
Bone and Bones/metabolism , Inflammation/immunology , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System/genetics , Tendons/metabolism , Animals , Bone and Bones/enzymology , Cartilage/enzymology , Cartilage/metabolism , Humans , Inflammation/enzymology , Inflammation/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/genetics , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Regeneration/drug effects , Regeneration/genetics , Regeneration/immunology , Tendons/anatomy & histology , Tendons/embryology , Tendons/enzymology
12.
Am J Hum Genet ; 99(3): 647-665, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27499521

ABSTRACT

Homozygous loss of SMN1 causes spinal muscular atrophy (SMA), the most common and devastating childhood genetic motor-neuron disease. The copy gene SMN2 produces only ∼10% functional SMN protein, insufficient to counteract development of SMA. In contrast, the human genetic modifier plastin 3 (PLS3), an actin-binding and -bundling protein, fully protects against SMA in SMN1-deleted individuals carrying 3-4 SMN2 copies. Here, we demonstrate that the combinatorial effect of suboptimal SMN antisense oligonucleotide treatment and PLS3 overexpression-a situation resembling the human condition in asymptomatic SMN1-deleted individuals-rescues survival (from 14 to >250 days) and motoric abilities in a severe SMA mouse model. Because PLS3 knockout in yeast impairs endocytosis, we hypothesized that disturbed endocytosis might be a key cellular mechanism underlying impaired neurotransmission and neuromuscular junction maintenance in SMA. Indeed, SMN deficit dramatically reduced endocytosis, which was restored to normal levels by PLS3 overexpression. Upon low-frequency electro-stimulation, endocytotic FM1-43 (SynaptoGreen) uptake in the presynaptic terminal of neuromuscular junctions was restored to control levels in SMA-PLS3 mice. Moreover, proteomics and biochemical analysis revealed CORO1C, another F-actin binding protein, whose direct binding to PLS3 is dependent on calcium. Similar to PLS3 overexpression, CORO1C overexpression restored fluid-phase endocytosis in SMN-knockdown cells by elevating F-actin amounts and rescued the axonal truncation and branching phenotype in Smn-depleted zebrafish. Our findings emphasize the power of genetic modifiers to unravel the cellular pathomechanisms underlying SMA and the power of combinatorial therapy based on splice correction of SMN2 and endocytosis improvement to efficiently treat SMA.


Subject(s)
Endocytosis/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Actins/metabolism , Animals , Axons/pathology , Calcium/metabolism , Carrier Proteins , Disease Models, Animal , Humans , Male , Mice , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Oligonucleotides, Antisense , Phenotype , Presynaptic Terminals/metabolism , Pyridinium Compounds/metabolism , Quaternary Ammonium Compounds/metabolism , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics , Synaptic Transmission/genetics , Zebrafish/genetics , Zebrafish/metabolism
13.
J Neurosci Res ; 97(11): 1414-1429, 2019 11.
Article in English | MEDLINE | ID: mdl-31257632

ABSTRACT

The use of neurotrophic factors as therapeutic agents for neurodegenerative diseases is considered as an approach aimed at restoring and maintaining neuronal function in the peripheral and central nervous system. Since the neuroprotective effect is depending on chronic delivery of the neurotrophic factors a sustained application, e.g., via cell-based delivery is necessary. Human mesenchymal stem cells (hMSCs) were lentivirally modified to overexpress brain-derived neurotrophic factor (BDNF) and to express fluorescent marker genes for easy visualization. Since genetically modified cells should be site-specifically retained (e.g., by encapsulation) in the patients to avoid adverse effects the cells were additionally differentiated to chondrocytes to hypothetically improve their vitality and survival in a delivery matrix. Different polycations for lentiviral transduction were investigated for their efficiency. The success of differentiation was determined by analysis of chondrocyte marker genes and the neuroprotective effect of BDNF-overexpressing cells was exemplarily investigated on neurons of the peripheral auditory system. The genetically modified hMSCs overexpressed BDNF from under 1 to 125 ng ml-1  day-1 depending on the donor and transfection method. Using protamine sulfate the transfection efficacy was superior compared to the use of polybrene. The BDNF secreted by the MSCs was significantly neuroprotective in comparison to the relevant controls even though the produced mean concentrations were lower than the effective concentrations for recombinant industrially produced proteins described in literature. The presented system of BDNF-overexpressing hMSCs is neuroprotective and is therefore considered as a promising method for sustained delivery of proteins in therapeutically relevant amounts to degenerating neuronal structures.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Chondrocytes/metabolism , Genetic Engineering/methods , Mesenchymal Stem Cells/metabolism , Neuroprotective Agents , Brain-Derived Neurotrophic Factor/genetics , Cell Differentiation , Gene Expression , Genetic Vectors/genetics , Humans , Lentivirus/genetics , Neurons/metabolism
14.
Pharm Res ; 36(12): 184, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31748894

ABSTRACT

PURPOSE: There is a plethora of studies on recombinant human bone morphogenetic protein-2 (rhBMP-2) application and delivery systems, but surprisingly few reports address the biophysical properties of the protein which are of crucial importance to develop effective delivery systems or to solve general problems related to rhBMP-2 production, purification, analysis and application. METHODS: The solubility, stability and bioactivity of rhBMP-2 obtained by renaturation of E. coli derived inclusion bodies was assessed at different pH and in different buffer systems using (dynamic) light scattering and thermal shift assays as well as intrinsic fluorescence measurements and luciferase based bioassays. RESULTS: rhBMP-2 is poorly soluble at physiological pH and higher. The presence of divalent anions further decreases the solubility even under acidic conditions. Thermal stability analyses revealed that rhBMP-2 precipitates are more stable compared to the soluble protein. Moreover, correctly folded rhBMP-2 is also bioactive as precipitated protein and precipitates readily dissolve under appropriate buffer conditions. Once properly formed rhBMP-2 also retains biological activity after temporary exposure to high concentrations of chaotropic denaturants. However, care should be taken to discriminate bioactive rhBMP-2 precipitates from misfolded rhBMP-2 aggregates, e.g. resolvability in MES buffer (pH 5) and a discrete peak in thermoshift experiments are mandatory for correctly folded rhBMP-2. CONCLUSIONS: Our analysis revealed that E. coli derived rhBMP-2 precipitates are not only bioactive but are also more stable compared to the soluble dimeric molecules. Knowledge about these unusual properties will be helpful to design improved delivery systems requiring lower amounts of rhBMP-2 in clinical applications.


Subject(s)
Bone Morphogenetic Protein 2/chemistry , Escherichia coli/chemistry , Transforming Growth Factor beta/chemistry , Heparin/chemistry , Humans , Hydrogen-Ion Concentration , Osmolar Concentration , Oxalates/chemistry , Particle Size , Protein Aggregates/drug effects , Protein Conformation , Protein Folding/drug effects , Protein Stability/drug effects , Recombinant Proteins/chemistry , Sodium Chloride/chemistry , Solubility/drug effects , Temperature
15.
Toxicol Appl Pharmacol ; 355: 28-42, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29932956

ABSTRACT

Acute exposure to high concentrations of H2S causes severe brain injury and long-term neurological disorders, but the mechanisms involved are not known. To better understand the cellular and molecular mechanisms involved in acute H2S-induced neurodegeneration we used a broad-spectrum proteomic analysis approach to identify key molecules and molecular pathways involved in the pathogenesis of acute H2S-induced neurotoxicity and neurodegeneration. Mice were subjected to acute inhalation exposure of up to750 ppm of H2S. H2S induced behavioral deficits and severe lesions including hemorrhage in the inferior colliculus (IC). The IC was microdissected for proteomic analysis. Tandem mass tags (TMT) liquid chromatography mass spectrometry (LC-MS/MS)-based quantitative proteomics was applied for protein identification and quantitation. LC-MS/MS identified 598, 562, and 546 altered proteomic changes at 2 h, and on days 2 and 4 post-H2S exposure, respectively. Of these, 77 proteomic changes were statistically significant at any of the 3 time points. Mass spectrometry data were subjected to Perseus 1.5.5.3 statistical analysis, and gene ontology heat map clustering. Expressions of several key molecules were verified to confirm H2S-dependent proteomics changes. Webgestalt pathway overrepresentation enrichment analysis with Panther engine revealed H2S exposure disrupted several biological processes including metabotropic glutamate receptor group 1 and inflammation mediated by chemokine and cytokine signaling pathways among others. Further analysis showed that energy metabolism, integrity of blood-brain barrier, hypoxic, and oxidative stress signaling pathways were also implicated. Collectively, this broad-spectrum proteomics data has provided important clues to follow up in future studies to further elucidate mechanisms of H2S-induced neurotoxicity.


Subject(s)
Hydrogen Sulfide/toxicity , Inferior Colliculi/metabolism , Inferior Colliculi/pathology , Neurotoxicity Syndromes/genetics , Neurotoxicity Syndromes/pathology , Proteomics , Animals , Behavior, Animal/drug effects , Gene Expression/drug effects , Inhalation Exposure , Intracranial Hemorrhages/chemically induced , Intracranial Hemorrhages/pathology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Seizures/chemically induced , Signal Transduction/drug effects
16.
Crit Care Med ; 45(12): e1270-e1279, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29028763

ABSTRACT

OBJECTIVES: Investigation of the effects of hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease. DESIGN: Prospective, controlled, randomized trial. SETTING: University animal research laboratory. SUBJECTS: Nineteen hypercholesterolemic pigs with preexisting coronary artery disease. INTERVENTIONS: Anesthetized, mechanically ventilated, and surgically instrumented pigs underwent 3 hours of hemorrhagic shock (removal of 30% of the calculated blood volume and subsequent titration of mean arterial blood pressure ≈40 mm Hg). Postshock resuscitation (48 hr) comprised retransfusion of shed blood, crystalloids (balanced electrolyte solution), and norepinephrine support. Pigs were randomly assigned to "control" (FIO2 0.3, adjusted for arterial oxygen saturation ≥ 90%) and "hyperoxia" (FIO2 1.0 for 24 hr) groups. MEASUREMENTS AND MAIN RESULTS: Before, at the end of shock and every 12 hours of resuscitation, datasets comprising hemodynamics, calorimetry, blood gases, cytokines, and cardiac and renal function were recorded. Postmortem, organs were sampled for immunohistochemistry, western blotting, and mitochondrial high-resolution respirometry. Survival rates were 50% and 89% in the control and hyperoxia groups, respectively (p = 0.077). Apart from higher relaxation constant τ at 24 hours, hyperoxia did not affect cardiac function. However, troponin values were lower (2.2 [0.9-6.2] vs 6.9 [4.8-9.8] ng/mL; p < 0.05) at the end of the experiment. Furthermore, hyperoxia decreased cardiac 3-nitrotyrosine formation and increased inducible nitric oxide synthase expression. Plasma creatinine values were lower in the hyperoxia group during resuscitation coinciding with significantly improved renal mitochondrial respiratory capacity and lower 3-nitrotyrosine formation. CONCLUSIONS: Hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease reduced renal dysfunction and cardiac injury, potentially resulting in improved survival, most likely due to increased mitochondrial respiratory capacity and decreased oxidative and nitrosative stress. Compared with our previous study, the present results suggest a higher benefit of hyperoxia in comorbid swine due to an increased susceptibility to hemorrhagic shock.


Subject(s)
Coronary Artery Disease/epidemiology , Hypercholesterolemia/epidemiology , Hyperoxia/physiopathology , Resuscitation/methods , Shock, Hemorrhagic/epidemiology , Shock, Hemorrhagic/physiopathology , Animals , Blood Gas Analysis , Blood Pressure , Cytokines/metabolism , Heart Function Tests , Hemodynamics , Kidney Function Tests , Prospective Studies , Random Allocation , Shock, Hemorrhagic/mortality , Shock, Hemorrhagic/therapy , Swine
17.
Ophthalmology ; 123(5): 1011-8, 2016 05.
Article in English | MEDLINE | ID: mdl-26935356

ABSTRACT

PURPOSE: Patients with iris defects suffer from severe visual impairment, especially increased glare sensitivity and cosmetic disturbances. This constitutes a great psychological strain for those patients. Until recently, possible treatment options were iris print contact lenses, sunglasses, and simple iris prostheses. The aim of this study was to investigate structural and functional outcome parameters and patient satisfaction after implantation of this new artificial iris prosthesis. DESIGN: Prospective case series investigating functional results and patient satisfaction after surgical iris reconstruction. PARTICIPANTS: Thirty-seven consecutive patients with traumatic iris defects presenting from 2011 through 2014 underwent pupillary reconstruction with a new artificial iris implant at the Department of Ophthalmology, Technical University Munich. METHODS: The custom-made, flexible silicone iris prosthesis ArtificialIris (HumanOptics, Erlangen, Germany) used in this study is a novel and innovative device in the surgical treatment of iris defects. Patients were examined before and after iris reconstruction with the iris implant placed in the ciliary sulcus. MAIN OUTCOME MEASURES: Change of best-corrected visual acuity (BCVA), intraocular pressure (IOP), pupillary aperture, glare, contrast sensitivity, endothelial cell density, anterior chamber depth, anterior chamber angle, and patient satisfaction were assessed. RESULTS: Thirty-two eyes of 32 patients (mean age, 52.9±16.0 years) were included. After implantation and during follow-up, BCVA and IOP did not change significantly (BCVA, 0.77±0.62 logarithm of the minimum angle of resolution [logMAR] preoperatively vs. 0.68±0.64 logMAR 1 month postoperatively [P = 0.792]; IOP, 14.94±3.55 mmHg preoperatively vs. 17.72±5.88 mmHg 1 month postoperatively [P = 0.197]). The pupillary aperture was reduced significantly (42.11±20.1 mm(2) to 8.7±0.3 mm(2); P < 0.001). Contrast sensitivity increased significantly (0.80±0.51 to 0.93±0.49; P = 0.014). Endothelial cell count revealed a significant decrease postoperatively (1949±716 per 1 mm(2) to 1841±689 per 1 mm(2); P = 0.003). Anterior chamber depth (4.03±1.06 mm preoperatively vs. 4.29±0.70 mm postoperatively; P = 0.186) and angle (43.2±13.5° preoperatively vs. 40.5±10.8° postoperatively; P = 0.772) showed no significant differences. Subjective impairment through glare (9.12±1.62 preoperatively vs. 3.07±2.29 postoperatively; P < 0.001) and cosmetic disturbance (6.33±3.21 preoperatively vs. 1.58±0.86 postoperatively; P < 0.001) improved significantly. Patient satisfaction with the overall result was 8.91±1.51 of 10 points on an analog scale. CONCLUSIONS: The implantation of the artificial iris is a new and effective therapeutic option for the treatment of distinctive traumatic iris defects and results in an individual, aesthetically appealing, and good functional outcome in addition to high patient satisfaction.


Subject(s)
Artificial Organs , Eye Injuries/surgery , Iris/injuries , Ophthalmologic Surgical Procedures , Plastic Surgery Procedures/methods , Prosthesis Implantation , Pupil , Cell Count , Contrast Sensitivity/physiology , Endothelium, Corneal/cytology , Female , Follow-Up Studies , Glare , Humans , Intraocular Pressure/physiology , Male , Middle Aged , Patient Satisfaction , Prospective Studies , Vision Disorders/rehabilitation , Visual Acuity/physiology
18.
Brain Behav Immun ; 50: 155-165, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26140734

ABSTRACT

Remyelination is the natural repair mechanism in demyelinating disorders such as multiple sclerosis (MS) and it was proposed that it might protect from axonal loss. For unknown reasons, remyelination is often incomplete or fails in MS lesions and therapeutic treatments to enhance remyelination are not available. Recently, the transplantation of exogenous mesenchymal stem cells (MSC) has emerged as a promising tool to enhance repair processes. This included the animal model experimental autoimmune encephalomyelitis (EAE), a commonly used model for the autoimmune mechanisms of MS. However, in EAE it is not clear if the beneficial effect of MSC derives from a direct influence on brain resident cells or if this is an indirect phenomenon via modulation of the peripheral immune system. The aim of this study was to determine potential regenerative functions of MSC in the toxic cuprizone model of demyelination that allows studying direct effects on de- and remyelination without the influence of the peripheral immune system. MSC from three different species (human, murine, canine) were transplanted either intraventricularly into the cerebrospinal fluid or directly into the lesion of the corpus callosum at two time points: at the onset of oligodendrocyte progenitor cell (OPC) proliferation or the peak of OPC proliferation during cuprizone induced demyelination. Our results show that MSC did not exert any regenerative effects after cuprizone induced demyelination and oligodendrocyte loss. During remyelination, MSC did not influence the dynamics of OPC proliferation and myelin formation. In conclusion, MSC did not exert direct regenerative functions in a mouse model where peripheral immune cells and especially T lymphocytes do not play a role. We thus suggest that the peripheral immune system is required for MSC to exert their effects and this is independent from a direct influence of the central nervous system.


Subject(s)
Corpus Callosum/physiopathology , Immune System/physiopathology , Mesenchymal Stem Cells/physiology , Multiple Sclerosis/physiopathology , Myelin Sheath/physiology , Animals , Corpus Callosum/pathology , Cuprizone , Dogs , Humans , Injections, Intraventricular , Male , Mesenchymal Stem Cell Transplantation , Mice , Mice, Inbred C57BL , Microglia/physiology , Multiple Sclerosis/chemically induced , Multiple Sclerosis/pathology , Myelin Sheath/pathology , Oligodendroglia/physiology
19.
BMC Cell Biol ; 14: 51, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24267292

ABSTRACT

BACKGROUND: THO (Suppressors of the transcriptional defects of hpr1 delta by overexpression) complex 5 (THOC5), an mRNA export protein, is involved in the expression of only 1% of all genes. Using an interferon inducible knockout mouse system, we have previously shown that THOC5 is an essential element in the maintenance of hematopoietic stem cells and cytokine-mediated hematopoiesis in adult mice. Here we interrogate THOC5 function in cell differentiation beyond the hematopoietic system and study pathological changes caused by THOC5 deficiency. RESULTS: To examine whether THOC5 plays a role in general differentiation processes, we generated tamoxifen inducible THOC5 knockout mice. We show here that the depletion of THOC5 impaired not only hematopoietic differentiation, but also differentiation and self renewal of the gut epithelium. Depletion of the THOC5 gene did not cause pathological alterations in liver or kidney. We further show that THOC5 is indispensable for processing of mRNAs induced by Wnt (wingless/integrated) signaling which play key roles in epithelial cell differentiation/proliferation. A subset of Wnt target mRNAs, SRY-box containing gene 9 (Sox9), and achaete-scute complex homolog 2 (Ascl2), but not Fibronectin 1 (Fn1), were down-regulated in THOC5 knockout intestinal cells. The down-regulated Wnt target mRNAs were able to bind to THOC5. Furthermore, pathological alterations in the gastrointestinal tract induced translocation of intestinal bacteria and caused sepsis in mice. The bacteria translocation may cause Toll-like receptor activation. We identified one of the Toll-like receptor inducible genes, prostaglandin-endoperoxidase synthase 2 (Ptgs2 or COX2) transcript as THOC5 target mRNA. CONCLUSION: THOC5 is indispensable for processing of only a subset of mRNAs, but plays a key role in processing of mRNAs inducible by Wnt signals. Furthermore, THOC5 is dispensable for general mRNA export in terminally differentiated organs, indicating that multiple mRNA export pathways exist. These data imply that THOC5 may be a useful tool for studying intestinal stem cells, for modifying the differentiation processes and for cancer therapy.


Subject(s)
Epithelial Cells/metabolism , Escherichia coli Infections/genetics , Intestinal Mucosa/metabolism , Nuclear Proteins/genetics , RNA, Messenger/genetics , Sepsis/genetics , Wnt Proteins/genetics , Animals , Bacterial Translocation , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Epithelial Cells/microbiology , Epithelial Cells/pathology , Escherichia coli/growth & development , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Fibronectins/genetics , Fibronectins/metabolism , Gene Expression Regulation , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Nuclear Proteins/deficiency , Protein Binding , RNA Transport , RNA, Messenger/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Sepsis/metabolism , Sepsis/microbiology , Signal Transduction , Wnt Proteins/metabolism
20.
Pathobiology ; 80(4): 203-10, 2013.
Article in English | MEDLINE | ID: mdl-23652284

ABSTRACT

The repair of tendon injuries still presents a major clinical challenge to orthopedic medicine. Tendons, like some other tissues, are poorly vascularized and heal slowly. In addition, healing often leads to the formation of fibrous tissue and scar tissue which lack flexibility and biomechanical properties. So the treatment of tendon injuries is challenging. We give an overview of the structure and composition of tendons, pathological states of tendon and natural healing, as well as therapeutic options. We focus in particular on biomaterials that have been specifically developed or suggested for the successful repair of tendon injuries. In addition, we also review factor- and cell-dependent strategies to heal tendon and ligament disorders. Although brief, we hope that this review will be helpful, particularly for those readers who are new to the field of tendon tissue engineering.


Subject(s)
Biocompatible Materials/therapeutic use , Ligaments/physiology , Regeneration , Tendon Injuries/therapy , Tendons/physiology , Tissue Engineering/methods , Biomechanical Phenomena , Cell- and Tissue-Based Therapy/methods , Genetic Therapy/methods , Humans , Ligaments/pathology , Tendon Injuries/pathology , Tendons/pathology , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL