Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35165193

ABSTRACT

Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.


Subject(s)
Rivers/chemistry , Water Pollution, Chemical/analysis , Water Pollution, Chemical/prevention & control , Ecosystem , Environmental Exposure , Environmental Monitoring , Humans , Pharmaceutical Preparations , Wastewater/analysis , Wastewater/chemistry , Water/analysis , Water/chemistry , Water Pollutants, Chemical/analysis
2.
Glob Chang Biol ; 29(12): 3240-3255, 2023 06.
Article in English | MEDLINE | ID: mdl-36943240

ABSTRACT

Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection.


Subject(s)
Ecosystem , Environmental Pollution , Biodiversity , Ecology , Conservation of Natural Resources , Climate Change
3.
Environ Sci Technol ; 57(1): 331-339, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36574476

ABSTRACT

Nanoplastics are an increasing environmental concern. In aquatic environments, nanoplastics will acquire an eco-corona by interacting with macromolecules (e.g., humic substances and extracellular polymeric substances (EPS)). Here, we show that the properties of the eco-corona and, consequently, its ability to enhance the transport of nanoplastics vary significantly with the surface functionality of nanoplastics and sources of macromolecules. The eco-corona derived from the EPS of Gram-negative Escherichia coli MG1655 enhances the transport of polystyrene (PS) nanospheres in saturated porous media to a much greater extent than the eco-corona derived from soil humic acid and fulvic acid. In comparison, the eco-corona from all three sources significantly enhance the transport of carboxylated PS (HOOC-PS). We show that the eco-corona inhibits the deposition of the two types of nanoplastics to the porous media mainly via steric repulsion. Accordingly, an eco-corona consisting of a higher mass of larger-sized macromolecules is generally more effective in enhancing transport. Notably, HOOC-PS tends to acquire macromolecules of lower hydrophobicity than PS. The more disordered and flexible structures of such macromolecules may result in greater elastic repulsion between the nanoplastics and sand grains and, consequently, greater transport enhancement. The findings of this study highlight the critical role of eco-corona formation in regulating the mobility of nanoplastics, as well as the complexity of this process.


Subject(s)
Microplastics , Nanospheres , Porosity , Soil , Polystyrenes , Humic Substances/analysis
4.
Environ Sci Technol ; 57(1): 168-178, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36576319

ABSTRACT

Tire wear particle (TWP)-derived compounds may be of high concern to consumers when released in the root zone of edible plants. We exposed lettuce plants to the TWP-derived compounds diphenylguanidine (DPG), hexamethoxymethylmelamine (HMMM), benzothiazole (BTZ), N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6PPD), and its quinone transformation product (6PPD-q) at concentrations of 1 mg L-1 in hydroponic solutions over 14 days to analyze if they are taken up and metabolized by the plants. Assuming that TWP may be a long-term source of TWP-derived compounds to plants, we further investigated the effect of leaching from TWP on the concentration of leachate compounds in lettuce leaves by adding constantly leaching TWP to the hydroponic solutions. Concentrations in leaves, roots, and nutrient solution were quantified by triple quadrupole mass spectrometry, and metabolites in the leaves were identified by Orbitrap high resolution mass spectrometry. This study demonstrates that TWP-derived compounds are readily taken up by lettuce with measured maximum leaf concentrations between ∼0.75 (6PPD) and 20 µg g-1 (HMMM). Although these compounds were metabolized in the plant, we identified several transformation products, most of which proved to be more stable in the lettuce leaves than the parent compounds. Furthermore, continuous leaching from TWP led to a resupply and replenishment of the metabolized compounds in the lettuce leaves. The stability of metabolized TWP-derived compounds with largely unknown toxicities is particularly concerning and is an important new aspect for the impact assessment of TWP in the environment.


Subject(s)
Benzoquinones , Environmental Exposure , Lactuca , Phenylenediamines , Biological Transport , Lactuca/chemistry , Lactuca/metabolism , Mass Spectrometry , Rubber/chemistry , Phenylenediamines/analysis , Phenylenediamines/metabolism , Benzoquinones/analysis , Benzoquinones/metabolism
5.
Environ Sci Technol ; 56(20): 14507-14516, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36154015

ABSTRACT

Phthalic acid esters (phthalates) have been detected everywhere in the environment, but data on leaching kinetics and the governing mass transfer process into aqueous systems remain largely unknown. In this study, we experimentally determined time-dependent leaching curves for three phthalates di(2-ethylhexyl) phthalate, di(2-ethylhexyl) terephthalate, and diisononyl phthalate from polyvinyl chloride (PVC) microplastics and thereby enabled a better understanding of their leaching kinetics. This is essential for exposure assessment and to predict microplastic-bound environmental concentrations of phthalates. Leaching curves were analyzed using models for intraparticle diffusion (IPD) and aqueous boundary layer diffusion (ABLD). We show that ABLD is the governing diffusion process for the continuous leaching of phthalates because phthalates are very hydrophobic (partitioning coefficients between PVC and water log KPVC/W were higher than 8.6), slowing down the diffusion through the ABL. Also, the diffusion coefficient in the polymer DPVC is relatively high (∼8 × 10-14 m2 s-1) and thus enhances IPD. Desorption half-lives of the studied PVC microplastics are greater than 500 years but can be strongly influenced by environmental factors. By combining leaching experiments and modeling, our results reveal that PVC microplastics are a long-term source of phthalates in the environment.


Subject(s)
Microplastics , Phthalic Acids , Esters , Plastics , Polymers , Polyvinyl Chloride/chemistry , Water
6.
Environ Sci Technol ; 56(16): 11354-11362, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35926116

ABSTRACT

Biochars can remove potentially toxic elements, such as inorganic mercury [Hg(II)] from contaminated waters. However, their performance in complex water matrices is rarely investigated, and the combined roles of natural organic matter (NOM) and ionic composition in the removal of Hg(II) by biochar remain unclear. Here, we investigate the influence of NOM and major ions such as chloride (Cl-), nitrate (NO3-), calcium (Ca2+), and sodium (Na+) on Hg(II) removal by a wood-based biochar (SWP700). Multiple sorption sites containing sulfur (S) were located within the porous SWP700. In the absence of NOM, Hg(II) removal was driven by these sites. Ca2+ bridging was important in enhancing removal of negatively charged Hg(II)-chloro complexes. In the presence of NOM, formation of soluble Hg-NOM complexes (as seen from speciation calculations), which have limited access to biochar pores, suppressed Hg(II) removal, but Cl- and Ca2+ could still facilitate it. The ability of Ca2+ to aggregate NOM, including Hg-NOM complexes, promoted Hg(II) removal from the dissolved fraction (<0.45 µm). Hg(II) removal in the presence of Cl- followed a stepwise mechanism. Weakly bound oxygen functional groups in NOM were outcompeted by Cl-, forming smaller-sized Hg(II)-chloro complexes, which could access additional intraparticle sorption sites. Therein, Cl- was outcompeted by S, which finally immobilized Hg(II) in SWP700 as confirmed by extended X-ray absorption fine structure spectroscopy. We conclude that in NOM containing oxic waters, with relatively high molar ratios of Cl-: NOM and Ca2+: NOM, Hg(II) removal can still be effective with SWP700.


Subject(s)
Mercury , Charcoal , Ions , Mercury/chemistry , Water , Wood
7.
Environ Sci Technol ; 56(16): 11323-11334, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35902073

ABSTRACT

Understanding the environmental fate of microplastics is essential for their risk assessment. It is essential to differentiate size classes and degradation states. Still, insights into fragmentation and degradation mechanisms of primary and secondary microplastics into micro- and nanoplastic fragments and other degradation products are limited. Here, we present an adapted NanoRelease protocol for a UV-dose-dependent assessment and size-selective quantification of the release of micro- and nanoplastic fragments down to 10 nm and demonstrate its applicability for polyamide and thermoplastic polyurethanes. The tested cryo-milled polymers do not originate from actual consumer products but are handled in industry and are therefore representative of polydisperse microplastics occurring in the environment. The protocol is suitable for various types of microplastic polymers, and the measured rates can serve to parameterize mechanistic fragmentation models. We also found that primary microplastics matched the same ranking of weathering stability as their corresponding macroplastics and that dissolved organics constitute a major rate of microplastic mass loss. The results imply that previously formed micro- and nanoplastic fragments can further degrade into water-soluble organics with measurable rates that enable modeling approaches for all environmental compartments accessible to UV light.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Plastics , Water , Water Pollutants, Chemical/analysis
8.
Environ Sci Technol ; 56(7): 4425-4436, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35263088

ABSTRACT

Nitriding has been used for decades to improve the corrosion resistance of iron and steel materials. Moreover, iron nitrides (FexN) have been shown to give an outstanding catalytic performance in a wide range of applications. We demonstrate that nitriding also substantially enhances the reactivity of zerovalent iron nanoparticles (nZVI) used for groundwater remediation, alongside reducing particle corrosion. Two different types of FexN nanoparticles were synthesized by passing gaseous NH3/N2 mixtures over pristine nZVI at elevated temperatures. The resulting particles were composed mostly of face-centered cubic (γ'-Fe4N) and hexagonal close-packed (ε-Fe2-3N) arrangements. Nitriding was found to increase the particles' water contact angle and surface availability of iron in reduced forms. The two types of FexN nanoparticles showed a 20- and 5-fold increase in the trichloroethylene (TCE) dechlorination rate, compared to pristine nZVI, and about a 3-fold reduction in the hydrogen evolution rate. This was related to a low energy barrier of 27.0 kJ mol-1 for the first dechlorination step of TCE on the γ'-Fe4N(001) surface, as revealed by density functional theory calculations with an implicit solvation model. TCE dechlorination experiments with aged particles showed that the γ'-Fe4N nanoparticles retained high reactivity even after three months of aging. This combined theoretical-experimental study shows that FexN nanoparticles represent a new and potentially important tool for TCE dechlorination.


Subject(s)
Groundwater , Nanoparticles , Trichloroethylene , Water Pollutants, Chemical , Iron
9.
Environ Sci Technol ; 56(23): 16873-16884, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36394826

ABSTRACT

The release of fragments from plastic products, that is, secondary microplastics, is a major concern in the context of the global plastic pollution. Currently available (thermoplastic) polyurethanes [(T)PU] are not biodegradable and therefore should be recycled. However, the ester bond in (T)PUs might be sufficiently hydrolysable to enable at least partial biodegradation of polyurethane particles. Here, we investigated biodegradation in compost of different types of (T)PU to gain insights into their fragmentation and biodegradation mechanisms. The studied (T)PUs varied regarding the chemistry of their polymer backbone (aromatic/aliphatic), hard phase content, cross-linking degree, and presence of a hydrolysis-stabilizing additive. We developed and validated an efficient and non-destructive polymer particle extraction process for partially biodegraded (T)PUs based on ultrasonication and density separation. Our results showed that biodegradation rates and extents decreased with increasing cross-linking density and hard-segment content. We found that the presence of a hydrolysis stabilizer reduced (T)PU fragmentation while not affecting the conversion of (T)PU carbon into CO2. We propose a biodegradation mechanism for (T)PUs that includes both mother particle shrinkage by surface erosion and fragmentation. The presented results help to understand structure-degradation relationships of (T)PUs and support recycling strategies.


Subject(s)
Plastics , Polyurethanes , Humans , Microplastics , Polymers , Biodegradation, Environmental , Suppuration
10.
Environ Sci Technol ; 56(8): 4702-4710, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35353522

ABSTRACT

Permanently charged and ionizable organic compounds (IOC) are a large and diverse group of compounds belonging to many contaminant classes, including pharmaceuticals, pesticides, industrial chemicals, and natural toxins. Sorption and mobility of IOCs are distinctively different from those of neutral compounds. Due to electrostatic interactions with natural sorbents, existing concepts for describing neutral organic contaminant sorption, and by extension mobility, are inadequate for IOC. Predictive models developed for neutral compounds are based on octanol-water partitioning of compounds (Kow) and organic-carbon content of soil/sediment, which is used to normalize sorption measurements (KOC). We revisit those concepts and their translation to IOC (Dow and DOC) and discuss compound and soil properties determining sorption of IOC under water saturated conditions. Highlighting possible complementary and/or alternative approaches to better assess IOC mobility, we discuss implications on their regulation and risk assessment. The development of better models for IOC mobility needs consistent and reliable sorption measurements at well-defined chemical conditions in natural porewater, better IOC-, as well as sorbent characterization. Such models should be complemented by monitoring data from the natural environment. The state of knowledge presented here may guide urgently needed future investigations in this field for researchers, engineers, and regulators.


Subject(s)
Organic Chemicals , Soil Pollutants , Adsorption , Carbon/chemistry , Organic Chemicals/chemistry , Soil , Soil Pollutants/analysis , Water/chemistry
11.
Anal Bioanal Chem ; 413(2): 299-314, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33123761

ABSTRACT

The detection and characterization of soluble metal nanoparticles in plant tissues are an analytical challenge, though a scientific necessity for regulating nano-enabled agrichemicals. The efficacy of two extraction methods to prepare plant samples for analysis by single particle ICP-MS, an analytical method enabling both size determination and quantification of nanoparticles (NP), was assessed. A standard enzyme-based extraction was compared to a newly developed methanol-based approach. Au, CuO, and ZnO NPs were extracted from three different plant leaf materials (lettuce, corn, and kale) selected for their agricultural relevance and differing characteristics. The enzyme-based approach was found to be unsuitable because of changes in the recovered NP size distribution of CuO NP. The MeOH-based extraction allowed reproducible extraction of the particle size distribution (PSD) without major alteration caused by the extraction. The type of leaf tissue did not significantly affect the recovered PSD. Total metal losses during the extraction process were largely due to the filtration step prior to analysis by spICP-MS, though this did not significantly affect PSD recovery. The methanol extraction worked with the three different NPs and plants tested and is suitable for studying the fate of labile metal-based nano-enabled agrichemicals.


Subject(s)
Mass Spectrometry/methods , Methanol/chemistry , Nanomedicine/methods , Nanoparticles/chemistry , Plants/metabolism , Water/chemistry , Copper/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Methanol/analysis , Particle Size , Plant Leaves/metabolism , Reproducibility of Results , Solubility , Titanium/chemistry , Zinc Oxide/chemistry
12.
Environ Sci Technol ; 54(7): 4583-4591, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32124609

ABSTRACT

Most contaminants of emerging concern are polar and/or ionizable organic compounds, whose removal from engineered and environmental systems is difficult. Carbonaceous sorbents include activated carbon, biochar, fullerenes, and carbon nanotubes, with applications such as drinking water filtration, wastewater treatment, and contaminant remediation. Tools for predicting sorption of many emerging contaminants to these sorbents are lacking because existing models were developed for neutral compounds. A method to select the appropriate sorbent for a given contaminant based on the ability to predict sorption is required by researchers and practitioners alike. Here, we present a widely applicable deep learning neural network approach that excellently predicted the conventionally used Freundlich isotherm fitting parameters log KF and n (R2 > 0.98 for log KF, and R2 > 0.91 for n). The neural network models are based on parameters generally available for carbonaceous sorbents and/or parameters freely available from online databases. A freely accessible graphical user interface is provided.


Subject(s)
Environmental Pollutants , Nanotubes, Carbon , Water Pollutants, Chemical , Adsorption , Charcoal , Deep Learning , Neural Networks, Computer
13.
Environ Sci Technol ; 54(2): 1250-1257, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31860289

ABSTRACT

The application of nanoscale zerovalent iron (nano-ZVI) particles for groundwater remediation has spurred research into the influence of the collector heterogeneity on the nano-ZVI mobility. The chemical heterogeneity of surfaces within aquifer media affects their surface charge distribution and their affinity for nano-ZVI. The groundwater chemistry affects the properties of both aquifer surfaces and the nano-ZVI particles. Commercial poly(acrylic acid)-coated nano-ZVI (PAA-nano-ZVI) particles were tested in column experiments using two solution chemistries and silica collectors with different degrees of chemical heterogeneity, achieved by ferrihydrite coating. A porous media filtration model was used to determine the attachment efficiency of PAA-nano-ZVI particles, and the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to describe the interactions between PAA-nano-ZVI particles and the aquifer "collectors". The mobility of PAA-nano-ZVI particles suspended in ultrapure water depended on the extent of ferrihydrite coating on the collector surfaces. The mobility of PAA-nano-ZVI particles under environmentally relevant conditions was independent of the collector chemical heterogeneity. The size of PAA-nano-ZVI aggregates doubled, inducing gravitational sedimentation and possibly straining as mechanisms of particle deposition. There was no repulsive energy barrier between particles and collectors, and the DLVO theory was unable to explain the observed particle attachment. Our results suggest that the groundwater chemistry has a greater influence on the mobility of PAA-nano-ZVI particles than the collector chemical heterogeneity. A better understanding of polymer adsorption to nanoparticles and its conformation under natural groundwater conditions is needed to further elucidate nanoparticle-collector interactions.


Subject(s)
Groundwater , Nanoparticles , Iron , Porosity , Silicon Dioxide
14.
Environ Sci Technol ; 54(19): 12051-12062, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32931256

ABSTRACT

A potential risk from human uptake of microplastics is the release of plastics-associated xenobiotics, but the key physicochemical properties of microplastics controlling this process are elusive. Here, we show that the gastrointestinal bioaccessibility, assessed using an in vitro digestive model, of two model xenobiotics (pyrene, at 391-624 mg/kg, and 4-nonylphenol, at 3054-8117 mg/kg) bound to 18 microplastics (including pristine polystyrene, polyvinyl chloride, polyethylene terephthalate, polypropylene, thermoplastic polyurethane, and polyethylene, and two artificially aged samples of each polymer) covered wide ranges: 16.1-77.4% and 26.4-83.8%, respectively. Sorption/desorption experiments conducted in simulated gastric fluid indicated that structural rigidity of polymers was an important factor controlling bioaccessibility of the nonpolar, nonionic pyrene, likely by inducing physical entrapment of pyrene in porous domains, whereas polarity of microplastics controlled bioaccessibility of 4-nonylphenol, by regulating polar interactions. The changes of bioaccessibility induced by microplastics aging corroborated the important roles of polymeric structures and surface polarity in dictating sorption affinity and degree of desorption hysteresis, and consequently, gastrointestinal bioaccessibility. Variance-based global sensitivity analysis using a deep learning neural network approach further revealed that micropore volume was the most important microplastics property controlling bioaccessibility of pyrene, whereas the O/C ratio played a key role in dictating the bioaccessibility of 4-nonylphenol in the gastric tract.


Subject(s)
Deep Learning , Water Pollutants, Chemical , Adsorption , Humans , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Xenobiotics
15.
Environ Sci Technol ; 51(5): 2499-2507, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28125881

ABSTRACT

Microplastics (MPs) have been identified as contaminants of emerging concern in aquatic environments and research into their behavior and fate has been sharply increasing in recent years. Nevertheless, significant gaps remain in our understanding of several crucial aspects of MP exposure and risk assessment, including the quantification of emissions, dominant fate processes, types of analytical tools required for characterization and monitoring, and adequate laboratory protocols for analysis and hazard testing. This Feature aims at identifying transferrable knowledge and experience from engineered nanoparticle (ENP) exposure assessment. This is achieved by comparing ENP and MPs based on their similarities as particulate contaminants, whereas critically discussing specific differences. We also highlight the most pressing research priorities to support an efficient development of tools and methods for MPs environmental risk assessment.


Subject(s)
Environmental Monitoring , Risk Assessment , Humans , Nanoparticles
16.
Environ Sci Technol ; 51(16): 9202-9209, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28682625

ABSTRACT

The affinity between nanoscale zerovalent iron (nano-ZVI) and mineral surfaces hinders its mobility, and hence its delivery into contaminated aquifers. We have tested the hypothesis that the attachment of poly(acrylic acid)-coated nano-ZVI (PAA-nano-ZVI) to mineral surfaces could be limited by coating such surfaces with sodium (Na) humate prior to PAA-nano-ZVI injection. Na humate was expected to form a coating over favorable sites for PAA-nano-ZVI attachment and hence reduce the affinity of PAA-nano-ZVI for the collector surfaces through electrosteric repulsion between the two interpenetrating charged polymers. Column experiments demonstrated that a low concentration (10 mg/L) Na humate solution in synthetic water significantly improved the mobility of PAA-nano-ZVI within a standard sand medium. This effect was, however, reduced in more heterogeneous natural collector media from contaminated sites, as not an adequate amount of the collector sites favorable for PAA-nano-ZVI attachment within these media appear to have been screened by the Na humate. Na humate did not interact with the surfaces of acid-washed glass beads or standard Ottawa sand, which presented less surface heterogeneity. Important factors influencing the effectiveness of Na humate application in improving PAA-nano-ZVI mobility include the solution chemistry, the Na humate concentration, and the collector properties.


Subject(s)
Ions , Metal Nanoparticles , Sodium , Iron , Polymers , Silicon Dioxide
18.
Analyst ; 141(21): 6042-6050, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27549027

ABSTRACT

Liposomes are biodegradable nanoparticle vesicles consisting of a lipid bilayer encapsulating an aqueous core. Entrapped cargo material is shielded from the extra-vesicular medium and sustained release of encapsulated material can be achieved. However, application of liposomes as nano-carriers demands their characterization concerning size and size distribution, particle-number concentration, occurrence of vesicle building blocks in solution and determination of the resulting vesicle encapsulation capacity. These questions can be targeted via gas-phase electrophoretic mobility molecular analysis (GEMMA) based on a nano electrospray (nES) charge-reduction source. This instrument separates single-charged nanoparticles in the gas-phase according to size in a high-laminar sheath-flow by means of an orthogonal, tunable electric field. nES GEMMA analysis enables to confirm liposome integrity after passage through the instrument (in combination with atomic force microscopy) as well as to exclude vesicle aggregation. Additionally, nanoparticle diameters at peak apexes and size distribution data are obtained. Differences of hydrodynamic and dry particle diameter values, as well as the effect of number- and mass-based concentration data analysis on obtained liposome diameters are shown. Furthermore, the repeatability of liposome preparation is studied, especially upon incorporation of PEGylated lipids in the bilayer. Finally, the instruments applicability to monitor mechanical stress applied to vesicles is demonstrated.


Subject(s)
Electrophoresis , Liposomes/analysis , Gases , Lipids/chemistry , Microscopy, Atomic Force , Particle Size
19.
Environ Sci Technol ; 50(20): 10960-10967, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27648740

ABSTRACT

The development of nanopesticides has recently received an increased level of attention. However, there are very few data about the environmental fate of these new products, and it is not known whether nanoformulations can be evaluated within the current pesticide regulatory framework. Sorption and degradation parameters of the insecticide bifenthrin were measured in two soils for (i) the pure active ingredient, (ii) three nanoformulations, and (iii) a commercially available formulation. In most cases, fate parameters derived for the nanopesticides were significantly different from those derived for the pure active ingredient (factors of up to 10 for sorption and 1.8 for degradation), but discrepancies were not easy to relate to the characteristics of the nanocarriers. In some cases, differences were also observed between the commercial formulation and the pure active ingredient (factors of up to 1.4 for sorption and 1.7 for degradation). In the regulatory context, the common assumption that formulations do not influence the environmental fate of pesticide active ingredients after application seems therefore not always adequate. In the absence of direct measurement, an inverse modeling approach was successfully applied to evaluate the durability of the formulations in soil (release half-life ranged between 11 and 74 days). Predicted groundwater concentrations very much depended on the modeling approach adopted but overall suggest that the nanoformulations studied could reduce losses to groundwater.

20.
Environ Sci Technol ; 50(7): 3641-8, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26949216

ABSTRACT

Approaches based on the octanol-water partition coefficient are commonly used to describe sorption of neutral organic compounds in environmental systems, but they are not suitable for organic acids, which can dissociate to form anions. We here investigate the applicability of an alternative approach based on the pH-dependent distribution ratio (DOW) to describe sorption of aromatic acids to sorbents representing different degrees of carbonization. Sorption isotherms for four structurally similar acids ((2,4-dichlorophenoxy)acetic acid (2,4-D), 4-chloro-2-15 methylphenoxy)acetic acid (MCPA), 4-(2,4-dichlorophenoxy)butanoic16 acid (2,4-DB), and 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan)) were measured for 15 sorbents: fresh and carbonized wood shavings, pig manure, sewage sludge, carbon nanotubes, and activated carbon. Dissociation greatly affected the sorption of all acids. Sorption coefficients measured in the high pH range indicated that sorption of the anions ranged over several orders of magnitude and should not be neglected. Sorption trends for all sorbates and carbonized sorbents could be very well described by a single regression equation that included DOW of the sorbate and the specific surface area of the sorbent (R(2) > 0.89).


Subject(s)
2,4-Dichlorophenoxyacetic Acid/analogs & derivatives , 2,4-Dichlorophenoxyacetic Acid/chemistry , Triclosan/chemistry , Adsorption , Animals , Carbon , Charcoal , Hydrogen-Ion Concentration , Manure , Nanotubes, Carbon , Sewage/chemistry , Swine
SELECTION OF CITATIONS
SEARCH DETAIL