Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Synchrotron Radiat ; 28(Pt 2): 576-587, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33650570

ABSTRACT

The X-ray free-electron lasers that became available during the last decade, like the European XFEL (EuXFEL), place high demands on their instrumentation. Especially at low photon energies below 1 keV, detectors with high sensitivity, and consequently low noise and high quantum efficiency, are required to enable facility users to fully exploit the scientific potential of the photon source. A 1-Megapixel pnCCD detector with a 1024 × 1024 pixel format has been installed and commissioned for imaging applications at the Nano-Sized Quantum System (NQS) station of the Small Quantum System (SQS) instrument at EuXFEL. The instrument is currently operating in the energy range between 0.5 and 3 keV and the NQS station is designed for investigations of the interaction of intense FEL pulses with clusters, nano-particles and small bio-molecules, by combining photo-ion and photo-electron spectroscopy with coherent diffraction imaging techniques. The core of the imaging detector is a pn-type charge coupled device (pnCCD) with a pixel pitch of 75 µm × 75 µm. Depending on the experimental scenario, the pnCCD enables imaging of single photons thanks to its very low electronic noise of 3 e- and high quantum efficiency. Here an overview on the EuXFEL pnCCD detector and the results from the commissioning and first user operation at the SQS experiment in June 2019 are presented. The detailed descriptions of the detector design and capabilities, its implementation at EuXFEL both mechanically and from the controls side as well as important data correction steps aim to provide useful background for users planning and analyzing experiments at EuXFEL and may serve as a benchmark for comparing and planning future endstations at other FELs.

2.
Nature ; 470(7332): 73-7, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21293373

ABSTRACT

X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 µm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.


Subject(s)
Crystallography, X-Ray/methods , Nanoparticles/chemistry , Nanotechnology/methods , Photosystem I Protein Complex/chemistry , Crystallography, X-Ray/instrumentation , Lasers , Models, Molecular , Nanotechnology/instrumentation , Protein Conformation , Time Factors , X-Rays
3.
Nat Methods ; 9(3): 263-5, 2012 Jan 29.
Article in English | MEDLINE | ID: mdl-22286383

ABSTRACT

X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.


Subject(s)
Crystallography, X-Ray/methods , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Membrane Proteins/ultrastructure , Protein Binding , Protein Conformation/radiation effects , X-Rays
4.
Nat Methods ; 9(3): 259-62, 2012 Jan 29.
Article in English | MEDLINE | ID: mdl-22286384

ABSTRACT

Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.


Subject(s)
Crystallography, X-Ray/methods , Crystallography/methods , Proteins/chemistry , Proteins/ultrastructure , Protein Binding/radiation effects , Protein Conformation/radiation effects , Proteins/radiation effects , Solubility/radiation effects , X-Rays
5.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 838-42, 2013 May.
Article in English | MEDLINE | ID: mdl-23633593

ABSTRACT

X-ray free-electron lasers (FELs) enable crystallographic data collection using extremely bright femtosecond pulses from microscopic crystals beyond the limitations of conventional radiation damage. This diffraction-before-destruction approach requires a new crystal for each FEL shot and, since the crystals cannot be rotated during the X-ray pulse, data collection requires averaging over many different crystals and a Monte Carlo integration of the diffraction intensities, making the accurate determination of structure factors challenging. To investigate whether sufficient accuracy can be attained for the measurement of anomalous signal, a large data set was collected from lysozyme microcrystals at the newly established `multi-purpose spectroscopy/imaging instrument' of the SPring-8 Ångstrom Compact Free-Electron Laser (SACLA) at RIKEN Harima. Anomalous difference density maps calculated from these data demonstrate that serial femtosecond crystallography using a free-electron laser is sufficiently accurate to measure even the very weak anomalous signal of naturally occurring S atoms in a protein at a photon energy of 7.3 keV.


Subject(s)
Crystallography, X-Ray/methods , Lasers , Protein Conformation , Sulfur/chemistry , Crystallography, X-Ray/instrumentation , Cysteine/chemistry , Models, Molecular , Muramidase/chemistry
6.
Opt Express ; 21(23): 28729-42, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24514385

ABSTRACT

Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.

7.
Opt Express ; 21(10): 12385-94, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23736456

ABSTRACT

Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10(21) W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.


Subject(s)
Aerosols/analysis , Aerosols/chemistry , Lasers , Photometry/methods , Refractometry/methods , Surface Plasmon Resonance/methods , X-Rays , Electrons , Equipment Design , Equipment Failure Analysis , Microspheres
8.
Opt Express ; 20(4): 4149-58, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22418172

ABSTRACT

We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume.

9.
Opt Express ; 20(3): 2706-16, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-22330507

ABSTRACT

We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.


Subject(s)
Crystallography, X-Ray/methods , Ferredoxins/ultrastructure , Lasers , Nanostructures/ultrastructure , X-Ray Diffraction/methods , Electrons , Protein Conformation , X-Rays
10.
Opt Express ; 19(17): 16542-9, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21935018

ABSTRACT

Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.

11.
Sci Data ; 3: 160058, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27479514

ABSTRACT

Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.


Subject(s)
Lasers , X-Ray Diffraction , Cells , Crystallography, X-Ray , Cyanobacteria , Electrons , Models, Molecular , Models, Theoretical , Nanoparticles , Proteins , Pulse , Time Factors , X-Rays
12.
Sci Data ; 3: 160060, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27479754

ABSTRACT

Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.


Subject(s)
Mimiviridae , X-Ray Diffraction , Algorithms , Computer Simulation , Crystallography, X-Ray , Data Collection , Electrons , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Lasers , Models, Theoretical , Particle Size , Scattering, Radiation , X-Rays
13.
Nat Commun ; 6: 5704, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25669616

ABSTRACT

There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.


Subject(s)
Cyanobacteria/cytology , Imaging, Three-Dimensional/methods , Lasers , Single-Cell Analysis/methods , Aerosols , Data Accuracy , Electrons , Injections , Optical Phenomena , Photons , X-Ray Diffraction , X-Rays
14.
Nat Photonics ; 6: 35-40, 2012.
Article in English | MEDLINE | ID: mdl-24078834

ABSTRACT

X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1-4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution.

15.
Phys Rev B Condens Matter Mater Phys ; 84(21): 214111, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-24089594

ABSTRACT

X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects.

SELECTION OF CITATIONS
SEARCH DETAIL