Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Radiat Environ Biophys ; 55(3): 393-400, 2016 08.
Article in English | MEDLINE | ID: mdl-27262316

ABSTRACT

In radioecology, transfer of radionuclides from soil to plants is typically described by a concentration ratio (CR), which assumes linearity of transfer with soil concentration. Nonlinear uptake is evidenced in many studies, but it is unclear how it should be taken into account in radioecological modeling. In this study, a conventional CR-based linear model, a nonlinear model derived from observed uptake into plants, and a new simple model based on the observation that nonlinear uptake leads to a practically constant concentration in plant tissues are compared. The three models were used to predict transfer of (234)U, (59)Ni and (210)Pb into spruce needles. The predictions of the nonlinear and the new model were essentially similar. In contrast, plant radionuclide concentration was underestimated by the linear model when the total element concentration in soil was relatively low, but within the range commonly observed in nature. It is concluded that the linear modeling could easily be replaced by a new approach that more realistically reflects the true processes involved in the uptake of elements into plants. The new modeling approach does not increase the complexity of modeling in comparison with CR-based linear models, and data needed for model parameters (element concentrations) are widely available.


Subject(s)
Lead/metabolism , Models, Theoretical , Nickel/metabolism , Picea/metabolism , Radioisotopes/metabolism , Uranium/metabolism , Plant Leaves/metabolism , Radiation Monitoring , Soil Pollutants, Radioactive
2.
Radiat Environ Biophys ; 51(1): 69-78, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22130976

ABSTRACT

Cobalt (Co), lead (Pb), molybdenum (Mo), nickel (Ni), uranium (U), and zinc (Zn) are among the elements that have radioactive isotopes in radioactive waste. Soil-to-plant transfer is a key process for possible adverse effects if these radionuclides are accidentally released into the environment. The present study aimed at investigating factors affecting such transfer in boreal forest. The plant species studied were blueberry (Vaccinium myrtillus), May lily (Maianthemum bifolium), narrow buckler fern (Dryopteris carthusiana), rowan (Sorbus aucuparia) and Norway spruce (Picea abies). Regression analyses were carried out to investigate the effects of the chemical composition and physical properties of soil on the soil-to-leaf/needle concentration ratios of Co, Mo, Ni, Pb, U and Zn. Soil potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P) and sulphur (S) concentrations were the most important factors affecting the soil-to-plant transfer of the elements studied. Soil clay and organic matter contents were found to significantly affect plant uptake of Mo, Pb and U. Knowledge of the effects of these factors is helpful for interpretation of the predictions of radioecological models describing soil-to-plant transfer and for improving such models.


Subject(s)
Magnoliopsida/metabolism , Metals/metabolism , Picea/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Metals/chemistry , Plant Leaves/metabolism , Principal Component Analysis , Radioactive Waste , Soil Pollutants/chemistry , Trees
3.
Tree Physiol ; 42(8): 1570-1586, 2022 08 06.
Article in English | MEDLINE | ID: mdl-35183060

ABSTRACT

Norway spruce (Picea abies (L.) Karst) trees are affected by ongoing climate change, including warming and exposure to phytotoxic levels of ozone. Non-volatile terpenoids and volatile terpenoids (biogenic organic volatile compounds, BVOCs) protect spruce against biotic and abiotic stresses. BVOCs also affect the atmosphere's oxidative capacity. Four-year-old Norway spruce were exposed to elevated ozone (EO) (1.4 × ambient) and warming (1.1 °C + ambient air) alone and in combination on an open-field exposure site in Central Finland. Net photosynthesis, needle terpenoid concentrations and BVOC emissions were measured four times during the experiment's second growing season: after bud opening in May, during the mid-growing season in June, and after needle maturation in August and September. Warming increased terpene concentrations in May due to advanced phenology and decreased them at the end of the growing season in matured current-year needles. Ozone enhanced these effects of warming on several compounds. Warming decreased concentrations of oxygenated sesquiterpenes in previous-year needles. Decreased emissions of oxygenated monoterpenes by warming and ozone alone in May were less prominent when ozone and warming were combined. A similar interactive treatment response in isoprene, camphene, tricyclene and α-pinene was observed in August when the temperature and ozone concentration was high. The results suggest long-term warming may reduce the terpenoid-based defence capacity of young spruce, but the defence capacity can be increased during the most sensitive growth phase (after bud break), and when high temperatures or ozone concentrations co-occur. Reduced BVOC emissions from young spruce may decrease the atmosphere's oxidative capacity in the warmer future, but the effect of EO may be marginal because less reactive minor compounds are affected.


Subject(s)
Ozone , Picea , Ozone/pharmacology , Photosynthesis , Picea/physiology , Terpenes , Trees/physiology
4.
Tree Physiol ; 40(4): 467-483, 2020 04 08.
Article in English | MEDLINE | ID: mdl-31860708

ABSTRACT

To study the effects of slightly elevated temperature and ozone (O3) on leaf structural characteristics of silver birch (Betula pendula Roth), saplings of four clonal genotypes of this species were exposed to elevated temperature (ambient air temperature +0.8-1.0 °C) and elevated O3 (1.3-1.4× ambient O3), alone and in combination, in an open-air exposure field over two growing seasons (2007 and 2008). So far, the impacts of moderate elevation of temperature or the combination of elevated temperature and O3 on leaf structure of silver birch have not been intensively studied, thus showing the urgent need for this type of studies. Elevated temperature significantly increased leaf size, reduced non-glandular trichome density, decreased epidermis thickness and increased plastoglobuli size in birch leaves during one or both growing seasons. During the second growing season, O3 elevation reduced leaf size, increased palisade layer thickness and decreased the number of plastoglobuli in spongy cells. Certain leaf structural changes observed under a single treatment of elevated temperature or O3, such as increase in the amount of chloroplasts or vacuole, were no longer detected at the combined treatment. Leaf structural responses to O3 and rising temperature may also depend on timing of the exposure during the plant and leaf development as indicated by the distinct changes in leaf structure along the experiment. Genotype-dependent cellular responses to the treatments were detected particularly in the palisade cells. Overall, this study showed that even a slight but realistic elevation in ambient temperature can notably modify leaf structure of silver birch saplings. Leaf structure, in turn, influences leaf function, thus potentially affecting acclimation capacity under changing climate.


Subject(s)
Betula , Ozone/pharmacology , Climate , Plant Leaves , Temperature
5.
Tree Physiol ; 29(1): 53-66, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19203932

ABSTRACT

The authors analyzed a suite of leaf characteristics that might help to explain the difference between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) clones. An open-field experiment comprising ambient ozone and 1.5x ambient ozone concentration (about 35 ppb) and two soil nitrogen regimes (60 and 140 kg N ha(-1) year(-1)) was conducted over two growing seasons on potted plants of eight hybrid aspen clones. Four of the clones had previously been determined to be ozone sensitive based on impaired growth in response to elevated ozone concentration. Photosynthetic rate, chlorophyll fluorescence, and concentrations of chlorophyll, protein and carbohydrates were analyzed three times during the second growing season, and foliar phenolic concentrations were measured at the end of the second growing season. Nitrogen amendment counteracted the effects of ozone, but had no effect on growth-related ozone sensitivity of the clones. Ozone-sensitive clones had higher photosynthetic capacity and higher concentrations of Rubisco and phenolics than ozone-tolerant clones, but the effects of ozone were similar in the sensitive and tolerant groups. Nitrogen addition had no effect on phenolic concentration, but elevated ozone concentration increased the concentrations of chlorogenic acid and (+)-catechin. This study suggests that condensed tannins and catechin, but not salicylates or flavonol glycosides, play a role in the ozone tolerance of hybrid aspen.


Subject(s)
Adaptation, Physiological/physiology , Ozone/metabolism , Plant Leaves/metabolism , Populus/metabolism , Adaptation, Physiological/genetics , Biomass , Carbohydrate Metabolism , Chimera , Chlorophyll/metabolism , Nitrogen/metabolism , Photosynthesis/physiology , Photosystem II Protein Complex/physiology , Populus/genetics , Populus/growth & development , Ribulose-Bisphosphate Carboxylase/metabolism , Stress, Physiological , Trees
6.
Tree Physiol ; 29(9): 1163-73, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19448266

ABSTRACT

Northern forest trees are challenged to adapt to changing climate, including global warming and increasing tropospheric ozone (O(3)) concentrations. Both elevated O(3) and temperature can cause significant changes in volatile organic compound (VOC) emissions as well as in leaf anatomy that can be related to adaptation or increased stress tolerance, or are signs of damage. Impacts of moderately elevated O(3) (1.3x ambient) and temperature (ambient + 1 degrees C), alone and in combination, on VOC emissions and leaf structure of two genotypes (2.2 and 5.2) of European aspen (Populus tremula L.) were studied in an open-field experiment in summer 2007. The impact of O(3) on measured variables was minor, but elevated temperature significantly increased emissions of total monoterpenes and green leaf volatiles. Genotypic differences in the responses to warming treatment were also observed. alpha-Pinene emission, which has been suggested to protect plants from elevated temperature, increased from genotype 5.2 only. Isoprene emission from genotype 2.2 decreased, whereas genotype 5.2 was able to retain high isoprene emission level also under elevated temperature. Elevated temperature also caused formation of thinner leaves, which was related to thinning of epidermis, palisade and spongy layers as well as reduced area of palisade cells. We consider aspen genotype 5.2 to have better potential for adaptation to increasing temperature because of thicker photosynthetic active palisade layer and higher isoprene and alpha-pinene emission levels compared to genotype 2.2. Our results show that even a moderate elevation in temperature is efficient enough to cause notable changes in VOC emissions and leaf structure of these aspen genotypes, possibly indicating the effort of the saplings to adapt to changing climate.


Subject(s)
Ozone/metabolism , Populus/metabolism , Temperature , Volatile Organic Compounds/metabolism , Acclimatization , Butadienes/metabolism , Genotype , Hemiterpenes/metabolism , Pentanes/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/metabolism , Populus/anatomy & histology , Populus/genetics
7.
Ambio ; 38(8): 413-7, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20175439

ABSTRACT

In this review the main growth responses of Finnish birch (Betula pendula, B. pubescens) and aspen species (Populus tremula and P. tremuloides x P. tremula) are correlated with ozone exposure, indicated as the AOT40 value. Data are derived from 23 different laboratory, open-top chamber, and free-air fumigation experiments. Our results indicate that these tree species are sensitive to increasing ozone concentrations, though high intraspecific variation exists. The roots are the most vulnerable targets in both genera. These growth reductions, determined from trees grown under optimal nutrient and water supply, were generally accompanied by increased visible foliar injuries, carbon allocation toward defensive compounds, reduced carbohydrate contents of leaves, impaired photosynthesis processes, disturbances in stomatal function, and earlier autumn senescence. Because both genera have shown complex ozone defense and response mechanisms, which are modified by variable environmental conditions, a mechanistically based approach is necessary for accurate ozone risk assessment.


Subject(s)
Betula/drug effects , Oxidants, Photochemical/toxicity , Ozone/toxicity , Populus/drug effects , Betula/genetics , Betula/growth & development , Finland , Genetic Variation , Plant Leaves/growth & development , Plant Stems/growth & development , Populus/genetics , Populus/growth & development
8.
Ambio ; 38(8): 418-24, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20175440

ABSTRACT

This review summarizes the main results from a 3-year open top chamber experiment, with two silver birch (Betula pendula Roth) clones (4 and 80) where impacts of 2x ambient [CO2] (EC) and [O3] (EO) and their combination (EC + EO) were examined. Growth, physiology of the foliage and root systems, crown structure, wood properties, and biological interactions were assessed to understand the effects of a future climate on the biology of silver birch. The clones displayed great differences in their reaction to EC and EO. Growth in clone 80 increased by 40% in EC and this clone also appeared O3-tolerant, showing no growth reduction. In contrast, growth in clone 4 was not enhanced by EC, and EO reduced growth with root growth being most affected. The physiological responses of the clones to EO were smaller than expected. We found no O3 effect on net photosynthesis in either of the clones, and many parameters indicated no change compared with chamber controls, suggesting active detoxification and defense in foliage. In EO, increased rhizospheric respiration over time and accelerated leaf senescence was common in both clones. We assumed that elevated O3 offsets the positive effects of elevated CO2 when plants were exposed to combined EC + EO treatment. In contrast, the responses to EC + EO mostly resembled the ones in EC, at least partly due to stomatal closure, which thus reduced O3 flux to the leaves. However, clear cellular level symptoms of oxidative stress were observed also in EC + EO treatment. Thus, we conclude that EC masked most of the negative O3 effects during long exposure of birch to EC + EO treatment. Biotic interactions were not heavily affected. Only some early season defoliators may suffer from faster maturation of leaves due to EO.


Subject(s)
Betula/drug effects , Carbon Dioxide/pharmacology , Oxidants, Photochemical/toxicity , Ozone/toxicity , Animals , Betula/genetics , Betula/growth & development , Finland , Genotype , Insecta/drug effects , Photosynthesis/drug effects , Soil
9.
New Phytol ; 180(4): 853-63, 2008.
Article in English | MEDLINE | ID: mdl-18680543

ABSTRACT

Emissions of isoprene, a reactive hydrocarbon, from Subarctic vegetation are not well documented. However, the Arctic is likely to experience the most pronounced effects of climatic warming, which may increase temperature-dependent isoprene emission. Here, we assessed isoprene emission from a Subarctic heath subjected to a 3-4 degrees C increase in air temperature and mountain birch (Betula pubescens ssp. czerepanovii) litter addition for 7-8 yr, simulating climatic warming and the subsequent expansion of deciduous shrub species and migration of the treeline. The measurements were performed using the dynamic chamber method on a wet heath with a mixture of shrubs, herbs and graminoids. Isoprene emissions averaged across the treatments were 36 +/- 5 microg m(-2) h(-1) in 2006 and 58 +/- 7 microg m(-2) h(-1) in 2007. The experimental warming increased the emissions by 83% in 2007 (P = 0.021) and by 56% in 2006 (P = 0.056), while litter addition had no significant effects. The net ecosystem CO(2) exchange was significantly decreased by warming in 2007. These results show that isoprene emissions from Subarctic heaths are comparable to those from Subarctic peatlands. Climatic warming will increase the emissions, and the amount of carbon lost as isoprene, from Subarctic heath ecosystems.


Subject(s)
Butadienes/chemistry , Carbon Dioxide/physiology , Ecosystem , Greenhouse Effect , Hemiterpenes/chemistry , Oils, Volatile/chemistry , Pentanes/chemistry , Plants/chemistry , Volatile Organic Compounds/chemistry , Arctic Regions , Biomass , Environment , Light , Principal Component Analysis
10.
Sci Rep ; 8(1): 13261, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30185795

ABSTRACT

Subarctic vegetation is composed of mountain birch [Betula pubescens ssp. czerepanovii (MB)] forests with shrubs and other species growing in the understorey. The effects of the presence and density of one understorey shrub, Rhododendron tomentosum (RT), on the volatile emissions of MB, were investigated in a Finnish subarctic forest site in early and late growing season. Only MB trees with an RT-understorey emitted the RT-specific sesquiterpenoids, palustrol, ledol and aromadendrene. Myrcene, which is the most abundant RT-monoterpene was also emitted in higher quantities by MB trees with an RT-understorey. The effect of RT understorey density on the recovery of RT compounds from MB branches was evident only during the late season when sampling temperature, as well as RT emissions, were higher. MB sesquiterpene and total emission rates decreased from early season to late season, while monoterpene emission rate increased. Both RT and MB terpenoid emission rates were linked to density of foliar glandular trichomes, which deteriorated over the season on MB leaves and emerged with new leaves in the late season in RT. We show that sesquiterpene and monoterpene compounds emitted by understorey vegetation are adsorbed and re-released by MB, strongly affecting the MB volatile emission profile.


Subject(s)
Betula/chemistry , Monoterpenes/analysis , Rhododendron/chemistry , Volatile Organic Compounds/analysis , Finland , Plant Leaves/chemistry , Sesquiterpenes/analysis , Trichomes/chemistry
11.
Sci Total Environ ; 539: 252-261, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26363398

ABSTRACT

Uranium (U), cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), thorium (Th) and zinc (Zn) occur naturally in soil but their radioactive isotopes can also be released into the environment during the nuclear fuel cycle. The transfer of these elements was studied in three different trophic levels in experimental mesocosms containing downy birch (Betula pubescens), narrow buckler fern (Dryopteris carthusiana) and Scandinavian small-reed (Calamagrostis purpurea ssp. Phragmitoides) as producers, snails (Arianta arbostorum) as herbivores, and earthworms (Lumbricus terrestris) as decomposers. To determine more precisely whether the element uptake of snails is mainly via their food (birch leaves) or both via soil and food, a separate microcosm experiment was also performed. The element uptake of snails did not generally depend on the presence of soil, indicating that the main uptake route was food, except for U, where soil contact was important for uptake when soil U concentration was high. Transfer of elements from soil to plants was not linear, i.e. it was not correctly described by constant concentration ratios (CR) commonly applied in radioecological modeling. Similar nonlinear transfer was found for the invertebrate animals included in this study: elements other than U were taken up more efficiently when element concentration in soil or food was low.


Subject(s)
Radiation Monitoring , Radioactive Pollutants/analysis , Animals , Ecosystem , Plants , Radioisotopes , Soil/chemistry
12.
Sci Total Environ ; 547: 39-47, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26780130

ABSTRACT

Different environmental stress factors often occur together but their combined effects on plant secondary metabolism are seldom considered. We studied the effect of enhanced ultraviolet (UV-B) (31% increase) radiation and temperature (ambient +2 °C) singly and in combination on gender-specific emissions of volatile organic compounds (VOCs) from 2-year-old clones of European aspen (Populus tremula L.). Plants grew in 36 experimental plots (6 replicates for Control, UV-A, UV-B, T, UV-A+T and UV-B+T treatments), in an experimental field. VOCs emitted from shoots were sampled from two (1 male and 1 female) randomly selected saplings (total of 72 saplings), per plot on two sampling occasions (June and July) in 2014. There was a significant UV-B×temperature interaction effect on emission rates of different VOCs. Isoprene emission rate was increased due to warming, but warming also modified VOC responses to both UV-A and UV-B radiation. Thus, UV-A increased isoprene emissions without warming, whereas UV-B increased emissions only in combination with warming. Warming-modified UV-A and UV-B responses were also seen in monoterpenes (MTs), sesquiterpenes (SQTs) and green leaf volatiles (GLVs). MTs showed also a UV × gender interaction effect as females had higher emission rates under UV-A and UV-B than males. UV × gender and T × gender interactions caused significant differences in VOC blend as there was more variation (more GLVs and trans-ß-caryophyllene) in VOCs from female saplings compared to male saplings. VOCs from the rhizosphere were also collected from each plot in two exposure seasons, but no significant treatment effects were observed. Our results suggest that simultaneous warming and elevated-UV-radiation increase the emission of VOCs from aspen. Thus the contribution of combined environmental factors on VOC emissions may have a greater impact to the photochemical reactions in the atmosphere compared to the impact of individual factors acting alone.


Subject(s)
Air Pollutants/metabolism , Populus/physiology , Ultraviolet Rays , Volatile Organic Compounds/metabolism , Atmosphere , Environmental Monitoring , Global Warming , Monoterpenes/metabolism , Plant Leaves/metabolism , Populus/radiation effects , Stress, Physiological , Temperature
13.
Tree Physiol ; 25(5): 621-32, 2005 May.
Article in English | MEDLINE | ID: mdl-15741148

ABSTRACT

Effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on photosynthesis and related biochemistry of two European silver birch (Betula pendula Roth) clones were studied under field conditions during 1999-2001. Seven-year-old trees of Clones 4 and 80 were exposed for 3 years to the following treatments in an open-top chamber experiment: outside control (OC), chamber control (CC), 2x ambient [CO2] (EC), 2x ambient [O3] (EO) and 2x ambient [CO2] + 2x ambient [O3] (EC+EO). During the experiment, gas exchange, chlorophyll fluorescence, amount and activity of Rubisco, concentrations of chlorophyll, soluble protein, soluble sugars, starch, nitrogen (N) and carbon:nitrogen (C:N) ratio were determined in short- and long-shoot leaves. Elevated [CO2] increased photosynthetic rate by around 30% when measurements were made at the growth [CO2]. When measured at ambient [CO2], photosynthesis was around 15% lower in EC trees than in CC trees. This was related to a approximately 10% decrease in total leaf N, to 26 and 20% decreases in the amount and activity of Rubisco, respectively, and to a 49% increase in starch concentration in elevated [CO2]. Elevated [O3] had no significant effect on gas exchange parameters and its effect on biochemistry was small in both clones. However, elevated [O3] decreased the proportion of Rubisco in total soluble proteins and the apparent quantum yield of photosystem II (PSII) photochemistry in light and increased non-photochemical quenching in 2000. The interactive effect of CO2 and O3 was variable. Elevated [O3] decreased chlorophyll concentration only in EO trees, and the EC+EO treatment decreased the total activity of Rubisco and increased the C:N ratio more than the EO treatment alone. The small effect of elevated [O3] on photosynthesis indicates that these young silver birches were fairly tolerant to annual [O3] exposures that were 2-3 times higher than the AOT40 value of 10 ppm.h. set as a critical dose for forest trees.


Subject(s)
Betula/metabolism , Carbon Dioxide/metabolism , Ozone/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism , Acclimatization/physiology , Chlorophyll/metabolism , Nitrogen/metabolism , Plant Proteins/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Seasons , Starch/metabolism
14.
Tree Physiol ; 35(9): 975-86, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26093370

ABSTRACT

Climate warming is having an impact on distribution, acclimation and defence capability of plants. We compared the emission rate and composition of volatile organic compounds (VOCs) from silver birch (Betula pendula (Roth)) provenances along a latitudinal gradient in a common garden experiment over the years 2012 and 2013. Micropropagated silver birch saplings from three provenances were acquired along a gradient of 7° latitude and planted at central (Joensuu 62°N) and northern (Kolari 67°N) sites. We collected VOCs emitted by shoots and assessed levels of herbivore damage of three genotypes of each provenance on three occasions at the central site and four occasions at the northern site. In 2012, trees of all provenances growing at the central site had higher total VOC emission rates than the same provenances growing at the northern site; in 2013 the reverse was true, thus indicating a variable effect of latitude. Trees of the southern provenance had lower VOC emission rates than trees of the central and northern provenances during both sampling years. However, northward or southward translocation itself had no significant effect on the total VOC emission rates, and no clear effect on insect herbivore damage. When VOC blend composition was studied, trees of all provenances usually emitted more green leaf volatiles at the northern site and more sesquiterpenes at the central site. The monoterpene composition of emissions from trees of the central provenance was distinct from that of the other provenances. In summary, provenance translocation did not have a clear effect in the short-term on VOC emissions and herbivory was not usually intense at the lower latitude. Our data did not support the hypothesis that trees growing at lower latitudes would experience more intense herbivory, and therefore allocate resources to chemical defence in the form of inducible VOC emissions.


Subject(s)
Altitude , Betula/chemistry , Volatile Organic Compounds/analysis , Betula/growth & development , Finland , Geography , Herbivory , Linear Models , Plant Shoots/chemistry , Principal Component Analysis , Soil/chemistry , Temperature
15.
New Phytol ; 147(3): 579-590, 2000 Sep.
Article in English | MEDLINE | ID: mdl-33862943

ABSTRACT

The photobiont ultrastructure of the epiphytic lichens Bryoria fuscescens and Bryoria fremontii was studied along the pollution gradient from two Cu-Ni smelters in Nikel and Monchegorsk in northern Finland and north-western Russia. The relationship between ultrastructural characteristics of B. fuscescens and environmental factors (i.e. climate, atmospheric SO2 and bark element concentrations) was studied by using a principal component analysis (PCA) aiming to assess the air quality in a northern environment. Based on PCA, increased plasmolysis and mitochondrial changes in the Trebouxia photobiont were significantly correlated with elevated pollutant concentrations. Degenerated cells, showing altered chloroplasts and electron-translucent pyrenoglobuli, occurred in lichens growing 35-50 km from the Monchegorsk smelter. Cell wall and cytoplasmic lipid volumes, and size of pyrenoglobuli, positively correlated with the distance from the Monchegorsk smelter. Vacuoles and electron-opaque vacuolar deposits were significantly increased at the Finnish site in the vicinity of a pulp mill. Swelling of mitochondrial cristae and thylakoids showed little correlation with environmental factors, but indicated of initial stage of injuries and were observed at several slightly polluted sites in northern Finland and north-western Russia. The results suggest that the severe photobiont injuries of lichens are strongly associated with poor air quality.

16.
New Phytol ; 156(3): 509-515, 2002 Dec.
Article in English | MEDLINE | ID: mdl-33873581

ABSTRACT

• The flux of ultraviolet (UV)-B radiation to the Earth's surface is increasing, particularly in high latitudes. We studied the sensitivity of some dominant plant species of boreal and subarctic peatlands to this increase. • Intact peat monoliths with the mosses Sphagnum balticum and Sphagnum papillosum, and cotton grass (Eriophorum vaginatum) were exposed to ambient solar UV-B or ambient solar UV-B supplemented by 30% in a field experiment in central Finland. • Although the UV-B dose was low during the growing season, owing to frequent cloudiness, both Sphagnum species showed significantly higher membrane permeability under enhanced UV-B. In S. balticum, UV-B tended to decrease the capitulum dry mass and induced a 30-40% increase in the concentration of chlorophyll and carotenoid pigments. Enhanced UV-B had no effects on leaf morphology, chlorophyll fluorescence or stomatal functioning in E. vaginatum. • The various UV-B responses in the Sphagnum species under investigation indicate that they may be sensitive even to small increases in solar UV-B radiation. By contrast, E. vaginatum appeared to tolerate the UV-B fluxes of the experiment.

17.
Tree Physiol ; 24(11): 1227-37, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15339732

ABSTRACT

We studied the effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on growth, biomass allocation and leaf area of field-grown O3-tolerant (Clone 4) and O3-sensitive clones (Clone 80) of European silver birch (Betula pendula Roth) trees during 1999-2001. Seven-year-old trees of Clones 4 and 80 growing outside in open-top chambers were exposed for 3 years to the following treatments: outside control (OC); chamber control (CC); 2 x ambient [CO2] (EC); 2 x ambient [O3] (EO); and 2 x ambient [CO2] + 2 x ambient [O3] (EC+EO). When the results for the two clones were analyzed together, elevated [CO2] increased tree growth and biomass, but had no effect on biomass allocation. Total leaf area increased and leaf abscission was delayed in response to elevated [CO2]. Elevated [O3] decreased dry mass of roots and branches and mean leaf size and induced earlier leaf abscission in the autumn; otherwise, the effects of elevated [O3] were small across the clones. However, there were significant interactions between elevated [CO2] and elevated [O3]. When results for the clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 were increased by elevated [CO2] and the stimulatory effects of elevated [CO2] on stem volume growth and total leaf area increased during the 3-year study. Clone 80 was unaffected by elevated [O3]. In Clone 4, elevated [O3] decreased root and branch biomass by 38 and 29%, respectively, whereas this clone showed few responses to elevated [CO2]. Elevated [CO2] significantly increased total leaf area in Clone 80 only, which may partly explain the smaller growth responses to elevated [CO2] of Clone 4 compared with Clone 80. Although we observed responses to elevated [O3], the responses to the EC+EO and EC treatments were similar, indicating that the trees only responded to elevated [O3] under ambient [CO2] conditions, perhaps reflecting a greater quantity of carbohydrates available for detoxification and repair in elevated [CO2].


Subject(s)
Betula/physiology , Greenhouse Effect , Trees/physiology , Betula/growth & development , Biomass , Carbon Dioxide , Ozone , Plant Leaves/physiology , Plant Stems/growth & development , Trees/growth & development
18.
Sci Total Environ ; 289(1-3): 1-12, 2002 Apr 22.
Article in English | MEDLINE | ID: mdl-12049387

ABSTRACT

Microcosms of a boreal peatland originating from an oligotrophic fen in Eastern Finland were fumigated under four ozone concentrations (0, 50, 100 and 150 ppb O3) in laboratory growth chambers during two separate experiments (autumn and summer) for 4 and 6 weeks, respectively. Ozone effects on Sphagnum mosses and the fluxes of carbon dioxide and methane were evaluated. In both experiments, the three Sphagnum species studied showed only a few significant responses to ozone. In the autumn experiment, membrane permeability of S. angustifolium, measured as conductivity and magnesium leakage, was significantly higher under ozone fumigation (P = 0.005 and < 0.001, respectively), and there was a distinct dose-dependence. S. magellanicum showed no clear responses, either for membrane leakage or pigment content. There were no substantial ozone responses in the gross photosynthesis or net CO2 exchange during the 6-week-long summer experiment, but dark ecosystem respiration was transiently increased by ozone concentration of 100 ppb after 14 days of exposure (P < 0.05). Fumigation with 100 ppb of ozone, however, more than doubled (P < 0.05) methane emission from the peatland monoliths. Our results suggest that increasing tropospheric ozone concentration may cause substantial changes in the carbon gas cycling of boreal peatlands, even though these changes are not closely associated with the changes in Sphagnum vegetation.


Subject(s)
Bryopsida/physiology , Carbon Dioxide/metabolism , Methane/analysis , Oxidants, Photochemical/adverse effects , Ozone/adverse effects , Ecosystem , Environmental Exposure , Finland , Soil
19.
Tree Physiol ; 34(4): 389-403, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24718738

ABSTRACT

The effects of elevated ozone (1.4× ambient) and temperature (ambient +1.3 °C) alone and in combination were studied on the needle cell structure of soil-grown Norway spruce seedlings in the late growing season and winter. Temperature treatment continued over winter and lengthened the snow-free period. Elevated temperature caused microscopic changes related to photosynthesis (decreased chloroplast size and increased number), carbon storage (reduced starch and increased cytoplasmic lipids) and defence (decreased mitochondrial size and proportion per cytoplasm, increased peroxisomes and plastoglobuli, altered appearance of tannins). The results suggest increased oxidative stress by elevated temperature and altered allocation of limited carbon reserve to defence. The number of peroxisomes and plastoglobuli remained high in the outer cells of needles of ozone-exposed seedlings but decreased in the inner cells. This may indicate defence allocation to cells close to the stomata and surface, which are experiencing more oxidative stress. Ozone reduced winter hardiness based on seasonal changes in chloroplast shape and location in the cells. The effects of ozone became evident at the end of the growing season, indicating the effect of cumulative ozone dose or that the seedlings were vulnerable to ozone at the later phases of winter hardening. Elevated temperature increased cellular damage in early winter and visible damage in spring, and the damage was enhanced by ozone. In conclusion, the study suggests that modest air temperature elevation increases stress at the cell structural level in spruce seedlings and is enhanced by low ozone elevation. Future climatic conditions where snow cover is formed later or is lacking but temperatures are low can increase the risk of severe seedling damage, and current and future predicted ozone concentrations increase this risk.


Subject(s)
Acclimatization , Ozone/pharmacology , Picea/physiology , Cell Wall/metabolism , Mesophyll Cells/drug effects , Mesophyll Cells/physiology , Mesophyll Cells/ultrastructure , Photosynthesis/physiology , Picea/drug effects , Picea/ultrastructure , Plant Leaves/drug effects , Plant Leaves/physiology , Plant Leaves/ultrastructure , Seasons , Seedlings/drug effects , Seedlings/physiology , Seedlings/ultrastructure , Temperature , Trees
20.
Tree Physiol ; 34(3): 241-52, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24627262

ABSTRACT

There is a need to incorporate the effects of herbivore damage into future models of plant volatile organic compound (VOC) emissions at leaf or canopy levels. Short-term (a few seconds to 48 h) changes in shoot VOC emissions of silver birch (Betula pendula Roth) in response to feeding by geometrid moths (Erannis defoliaria Hübner) were monitored online by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS). In addition, two separate field experiments were established to study the effects of long-term foliage herbivory (FH, 30-32 days of feeding by geometrids Agriopis aurantiaria (Clerck) and E. defoliaria in two consecutive years) and bark herbivory (BH, 21 days of feeding by the pine weevil (Hylobius abietis L.) in the first year) on shoot and rhizosphere VOC emissions of three silver birch genotypes (gt14, gt15 and Hausjärvi provenance). Online monitoring of VOCs emitted from foliage damaged by geometrid larvae showed rapid bursts of green leaf volatiles (GLVs) immediately after feeding activity, whereas terpenoid emissions had a tendency to gradually increase during the monitoring period. Long-term FH caused transient increases in total monoterpene (MT) emissions from gt14 and sesquiterpene (SQT) emissions from Hausjärvi provenance, mainly in the last experimental season. In the BH experiment, genotype effects were detected, with gt14 trees having significantly higher total MT emissions compared with other genotypes. Only MTs were detected in the rhizosphere samples of both field experiments, but their emission rates were unaffected by genotype or herbivory. The results suggest that silver birch shows a rapid VOC emission response to short-term foliage herbivory, whereas the response to long-term foliage herbivory and bark herbivory is less pronounced and variable at different time points.


Subject(s)
Betula/physiology , Herbivory/physiology , Volatile Organic Compounds/analysis , Betula/genetics , Linear Models , Plant Bark/physiology , Plant Leaves/physiology , Principal Component Analysis , Terpenes/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL