Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Stroke ; 55(7): 1923-1926, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38818720

ABSTRACT

BACKGROUND: AST-004, a small molecule agonist of the adenosine A1 and A3 receptors, is a potential cerebroprotectant for patients with acute stroke and is currently in clinical trials. Drug-drug interactions are critically important to assess in the context of acute stroke care. Lytic therapy with tPA (tissue-type plasminogen activator)-induced plasmin formation (alteplase) is the only available pharmacotherapy for acute stroke. Consequently, it is imperative to evaluate potential interactions between AST-004 and tPAs such as alteplase and tenecteplase. METHODS: The interactions between AST-004 and tPAs were evaluated in 3 ways in preparation for AST-004 phase II trials. First, the metabolic stability of AST-004 was determined in the presence of alteplase and plasmin. Second, the potential for AST-004 to influence the thrombolytic efficacy of alteplase and tenecteplase was evaluated with an in vitro assay system utilizing a fluorogenic substrate of plasmin. Finally, the potential for AST-004 to influence the thrombolytic efficacy of alteplase was also determined with an in vitro thrombolysis assay of human blood thrombi. RESULTS: Neither alteplase nor plasmin affected the stability of AST-004 in vitro. In 2 different in vitro systems, AST-004 had no effect on the ability of alteplase or tenecteplase to generate plasmin, and AST-004 had no effect on the thrombolytic efficacy of alteplase to lyse blood clots in human blood. CONCLUSIONS: These studies indicate that there will be no interactions between AST-004 and tPAs such as alteplase or tenecteplase in patients with stroke undergoing thrombolytic therapy.


Subject(s)
Drug Interactions , Fibrinolytic Agents , Tenecteplase , Tissue Plasminogen Activator , Tissue Plasminogen Activator/therapeutic use , Humans , Tenecteplase/therapeutic use , Fibrinolytic Agents/therapeutic use , Fibrinolytic Agents/pharmacology , Adenosine A1 Receptor Agonists/pharmacology , Adenosine A1 Receptor Agonists/therapeutic use , Receptor, Adenosine A3/metabolism , Fibrinolysin , Stroke/drug therapy , Receptor, Adenosine A1/metabolism
2.
Purinergic Signal ; 16(4): 543-559, 2020 12.
Article in English | MEDLINE | ID: mdl-33129204

ABSTRACT

Rapid phosphoester hydrolysis of endogenous purine and pyrimidine nucleotides has challenged the characterization of the role of P2 receptors in physiology and pathology. Nucleotide phosphoester stabilization has been pursued on a number of medicinal chemistry fronts. We investigated the in vitro and in vivo stability and pharmacokinetics of prototypical nucleotide P2Y1 receptor (P2Y1R) agonists and antagonists. These included the riboside nucleotide agonist 2-methylthio-ADP and antagonist MRS2179, as well as agonist MRS2365 and antagonist MRS2500 containing constrained (N)-methanocarba rings, which were previously reported to form nucleotides that are more slowly hydrolyzed at the α-phosphoester compared with the ribosides. In vitro incubations in mouse and human plasma and blood demonstrated the rapid hydrolysis of these compounds to nucleoside metabolites. This metabolism was inhibited by EDTA to chelate divalent cations required by ectonucleotidases for nucleotide hydrolysis. This rapid hydrolysis was confirmed in vivo in mouse pharmacokinetic studies that demonstrate that MRS2365 is a prodrug of the nucleoside metabolite AST-004 (MRS4322). Furthermore, we demonstrate that the nucleoside metabolites of MRS2365 and 2-methylthio-ADP are adenosine receptor (AR) agonists, notably at A3 and A1ARs. In vivo efficacy of MRS2365 in murine models of traumatic brain injury and stroke can be attributed to AR activation by its nucleoside metabolite AST-004, rather than P2Y1R activation. This research suggests the importance of reevaluation of previous in vitro and in vivo research of P2YRs and P2XRs as there is a potential that the pharmacology attributed to nucleotide agonists is due to AR activation by active nucleoside metabolites.


Subject(s)
Adenosine A1 Receptor Agonists/pharmacokinetics , Adenosine A3 Receptor Agonists/pharmacokinetics , Prodrugs/pharmacokinetics , Purinergic P2Y Receptor Agonists/pharmacokinetics , Adenosine Diphosphate/analogs & derivatives , Adenosine Diphosphate/pharmacokinetics , Animals , Deoxyadenine Nucleotides/pharmacokinetics , Female , Humans , Mice , Mice, Inbred C57BL , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A3/metabolism , Receptors, Purinergic P2Y1/metabolism
3.
Arch Biochem Biophys ; 613: 61-68, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27916505

ABSTRACT

Cyclophilin D (CyPD), a mitochondrial matrix protein, has been widely studied for its role in mitochondrial-mediated cell death. Unexpectedly, we previously discovered that overexpression of CyPD in a stable cell line, increased mitochondrial membrane potentials and enhanced cell survival under conditions of oxidative stress. Here, we investigated the underlying mechanisms responsible for these findings. Spectrophotometric measurements in isolated mitochondria revealed that overexpression of CyPD in HEK293 cells increased respiratory chain activity, but only for Complex III (CIII). Acute treatment of mitochondria with the immumosupressant cyclosporine A did not affect CIII activity. Expression levels of the CIII subunits cytochrome b and Rieske-FeS were elevated in HEK293 cells overexpressing CyPD. However, CIII activity was still significantly higher compared to control mitochondria, even when normalized by protein expression. Blue native gel electrophoresis and Western blot assays revealed a molecular interaction of CyPD with CIII and increased levels of supercomplexes in mitochondrial protein extracts. Radiolabeled protein synthesis in mitochondria showed that CIII assembly and formation of supercomplexes containing CIII were significantly faster when CyPD was overexpressed. Taken together, these data indicate that CyPD regulates mitochondrial metabolism, and likely cell survival, by promoting more efficient electrons flow through the respiratory chain via increased supercomplex formation.


Subject(s)
Cyclophilins/metabolism , Mitochondria/metabolism , Cyclosporine/chemistry , Electron Transport , Gene Expression Regulation , HEK293 Cells , Humans , Membrane Potential, Mitochondrial , Mitochondrial Membranes/metabolism , Oxidative Stress , Oxygen/chemistry , Protein Binding , Protein Conformation , Spectrophotometry
4.
Neurobiol Dis ; 94: 139-56, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27334877

ABSTRACT

The Ca(2+)-dependent phosphatase, calcineurin (CN) is thought to play a detrimental role in damaged neurons; however, its role in astrocytes is unclear. In cultured astrocytes, CNß expression increased after treatment with a sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor, thapsigargin, and with oxygen and glucose deprivation, an in vitro model of ischemia. Similarly, CNß was induced in astrocytes in vivo in two different mouse models of brain injury - photothrombotic stroke and traumatic brain injury (TBI). Immunoprecipitation and chemical activation dimerization methods pointed to physical interaction of CNß with the unfolded protein response (UPR) sensor, protein kinase RNA-like endoplasmic reticulum kinase (PERK). In accordance, induction of CNß resulted in oligomerization and activation of PERK. Strikingly, the presence of a phosphatase inhibitor did not interfere with CNß-mediated activation of PERK, suggesting a hitherto undiscovered non-enzymatic role for CNß. Importantly, the cytoprotective function of CNß was PERK-dependent both in vitro and in vivo. Loss of CNß in vivo resulted in a significant increase in cerebral damage, and correlated with a decrease in astrocyte size, PERK activity and glial fibrillary acidic protein (GFAP) expression. Taken together, these data reveal a critical role for the CNß-PERK axis in not only prolonging astrocyte cell survival but also in modulating astrogliosis after brain injury.


Subject(s)
Brain Injuries/metabolism , Brain/metabolism , Calcineurin/metabolism , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum/metabolism , Unfolded Protein Response , Animals , Astrocytes/metabolism , Calcium/metabolism , Cells, Cultured , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Unfolded Protein Response/physiology , eIF-2 Kinase/metabolism
5.
Neurotherapeutics ; 20(3): 853-869, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36976493

ABSTRACT

We investigated whether pharmacological increase of "M-type" (KCNQ, Kv7) K + channel currents by the M-channel opener, retigabine (RTG), acutely after repetitive traumatic brain injuries (rTBIs), prevents or reduces their long-term detrimental effects. rTBIs were studied using a blast shock air wave mouse model. Animals were monitored by video and electroencephalogram (EEG) records for nine months after the last injury to assess the occurrence of post-traumatic seizures (PTS), post-traumatic epilepsy (PTE), sleep-wake cycle architecture alterations, and the power of the EEG signals. We evaluated the development of long-term changes in the brain associated with various neurodegenerative diseases in mice by examining transactive response DNA-binding protein 43 (TDP-43) expression and nerve fiber damage ~ 2 years after the rTBIs. We observed acute RTG treatment to reduce the duration of PTS and impair the development of PTE. Acute RTG treatment also prevented post-injury hypersomnia, nerve fiber damage, and cortical TDP-43 accumulation and translocation from the nucleus to the cytoplasm. Mice that developed PTE displayed impaired rapid eye movement (REM) sleep, and there were significant correlations between seizure duration and time spent in the different stages of the sleep-wake cycle. We observed acute RTG treatment to impair injury-induced reduction of age-related increase in gamma frequency power of the EGG, which has been suggested to be necessary for a healthy aged brain. The data show that RTG, administered acutely post-TBI, is a promising, novel therapeutic option to blunt/prevent several long-term effects of rTBIs. Furthermore, our results show a direct relationship between sleep architecture and PTE.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Mice , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Seizures/drug therapy , Seizures/etiology , Carbamates/pharmacology , Carbamates/therapeutic use
6.
J Gerontol A Biol Sci Med Sci ; 77(2): 268-275, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34610126

ABSTRACT

To explore the role of the small heat shock protein beta 1 (HspB1, also known as Hsp25 in rodents and Hsp27 in humans) in longevity, we created a Caenorhabiditis elegans model with a high level of ubiquitous expression of the naked mole-rat HspB1 protein. The worms showed increased life span under multiple conditions and also increased resistance to heat stress. RNAi experiments suggest that HspB1-induced life extension is dependent on the transcription factors skn-1 (Nrf2) and hsf-1 (Hsf1). RNAseq from HspB1 worms showed an enrichment in several skn-1 target genes, including collagen proteins and lysosomal genes. Expression of HspB1 also improved functional outcomes regulated by SKN-1, specifically oxidative stress resistance and pharyngeal integrity. This work is the first to link a small heat shock protein with collagen function, suggesting a novel role for HspB1 as a hub between canonical heat response signaling and SKN-1 transcription.


Subject(s)
Caenorhabditis elegans Proteins , Longevity , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Heat-Shock Response/genetics , Longevity/genetics , Oxidative Stress/physiology
7.
Cell Calcium ; 106: 102622, 2022 09.
Article in English | MEDLINE | ID: mdl-35908318

ABSTRACT

The accumulation of unfolded proteins within the Endoplasmic Reticulum (ER) activates a signal transduction pathway termed the unfolded protein response (UPR), which attempts to restore ER homoeostasis. If this cannot be done, UPR signalling ultimately induces apoptosis. Ca2+ depletion in the ER is a potent inducer of ER stress. Despite the ubiquity of Ca2+ as an intracellular messenger, the precise mechanism(s) by which Ca2+ release affects the UPR remains unknown. Tethering a genetically encoded Ca2+ indicator (GCamP6) to the ER membrane revealed novel Ca2+ signalling events initiated by Ca2+ microdomains in human astrocytes under ER stress, induced by tunicamycin (Tm), an N-glycosylation inhibitor, as well as in a cell model deficient in all three inositol triphosphate receptor isoforms. Pharmacological and molecular studies indicate that these local events are mediated by translocons and that the Ca2+ microdomains impact (PKR)-like-ER kinase (PERK), an UPR sensor, activation. These findings reveal the existence of a Ca2+ signal mechanism by which stressor-mediated Ca2+ release regulates ER stress.


Subject(s)
Endoplasmic Reticulum Stress , eIF-2 Kinase , Apoptosis , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Humans , Signal Transduction , Unfolded Protein Response , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
8.
Article in English | MEDLINE | ID: mdl-38348128

ABSTRACT

Acute ischemic stroke (AIS) is the second leading cause of death globally. No Food and Drug Administration (FDA) approved therapies exist that target cerebroprotection following stroke. Our group recently reported significant cerebroprotection with the adenosine A1/A3 receptor agonist, AST-004, in a transient stroke model in non-human primates (NHP) and in a preclinical mouse model of traumatic brain injury (TBI). However, the specific receptor pathway activated was only inferred based on in vitro binding studies. The current study investigated the underlying mechanism of AST-004 cerebroprotection in two independent models of AIS: permanent photothrombotic stroke in mice and transient middle cerebral artery occlusion (MCAO) in rats. AST-004 treatments across a range of doses were cerebroprotective and efficacy could be blocked by A3R antagonism, indicating a mechanism of action that does not require A1R agonism. The high affinity A3R agonist MRS5698 was also cerebroprotective following stroke, but not the A3R agonist Cl-IB-MECA under our experimental conditions. AST-004 efficacy was blocked by the astrocyte specific mitochondrial toxin fluoroacetate, confirming an underlying mechanism of cerebroprotection that was dependent on astrocyte mitochondrial metabolism. An increase in A3R mRNA levels following stroke suggested an intrinsic cerebroprotective response that was mediated by A3R signaling. Together, these studies confirm that certain A3R agonists, such as AST-004, may be exciting new therapeutic avenues to develop for AIS.

9.
Hum Mol Genet ; 18(9): 1578-89, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19208652

ABSTRACT

Mitochondrial alteration has been long proposed to play a major role in tumorigenesis. Recently, mitochondrial DNA (mtDNA) mutations have been found in a variety of cancer cells. In this study, we examined the contribution of mtDNA mutation and mitochondrial dysfunction in tumorigenesis first using human cell lines carrying a frame-shift at NADH dehydrogenase (respiratory complex I) subunit 5 gene (ND5); the same homoplasmic mutation was also identified in a human colorectal cancer cell line earlier. With increasing mutant ND5 mtDNA content, respiratory function including oxygen consumption and ATP generation through oxidative phosphorylation declined progressively, while lactate production and dependence on glucose increased. Interestingly, the reactive oxygen species (ROS) levels and apoptosis exhibited antagonistic pleiotropy associated with mitochondrial defects. Furthermore, the anchorage-dependence phenotype and tumor-forming capacity of cells carrying wild-type and mutant mtDNA were tested by growth assay in soft agar and subcutaneous implantation of the cells in nude mice. Surprisingly, the cell line carrying the heteroplasmic ND5 mtDNA mutation showed significantly enhanced tumor growth, while cells with homoplasmic form of the same mutation inhibited tumor formation. Similar results were obtained from the analysis of a series of mouse cell lines carrying a nonsense mutation at ND5 gene. Our results indicate that the mtDNA mutations might play an important role in the early stage of cancer development, possibly through alteration of ROS generation and apoptosis.


Subject(s)
Apoptosis , DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Mitochondrial Proteins/genetics , Mutation , NADH Dehydrogenase/genetics , Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , DNA, Mitochondrial/metabolism , Electron Transport Complex I/metabolism , Humans , Male , Mice , Mice, Nude , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , NADH Dehydrogenase/metabolism , Neoplasms/genetics , Neoplasms/physiopathology
10.
Neurotherapeutics ; 18(4): 2707-2721, 2021 10.
Article in English | MEDLINE | ID: mdl-34608616

ABSTRACT

Traumatic brain injury (TBI) remains one of the greatest public health concerns with increasing morbidity and mortality rates worldwide. Our group reported that stimulation of astrocyte mitochondrial metabolism by P2Y1 receptor agonists significantly reduced cerebral edema and reactive gliosis in a TBI model. Subsequent data on the pharmacokinetics (PK) and rapid metabolism of these compounds suggested that neuroprotection was likely mediated by a metabolite, AST-004, which binding data indicated was an adenosine A3 receptor (A3R) agonist. The neuroprotective efficacy of AST-004 was tested in a control closed cortical injury (CCCI) model of TBI in mice. Twenty-four (24) hours post-injury, mice subjected to CCCI and treated with AST-004 (0.22 mg/kg, injected 30 min post-trauma) exhibited significantly less secondary brain injury. These effects were quantified with less cell death (PSVue794 fluorescence) and loss of blood brain barrier breakdown (Evans blue extravasation assay), compared to vehicle-treated TBI mice. TBI-treated mice also exhibited significantly reduced neuroinflammatory markers, glial-fibrillary acidic protein (GFAP, astrogliosis) and ionized Ca2+-binding adaptor molecule 1 (Iba1, microgliosis), both at the mRNA (qRT-PCR) and protein (Western blot and immunofluorescence) levels, respectively. Four (4) weeks post-injury, both male and female TBI mice presented a significant reduction in freezing behavior during contextual fear conditioning (after foot shock). AST-004 treatment prevented this TBI-induced impairment in male mice, but did not significantly affect impairment in female mice. Impairment of spatial memory, assessed 24 and 48 h after the initial fear conditioning, was also reduced in AST-004-treated TBI-male mice. Female TBI mice did not exhibit memory impairment 24 and 48 h after contextual fear conditioning and similarly, AST-004-treated female TBI mice were comparable to sham mice. Finally, AST-004 treatments were found to increase in vivo ATP production in astrocytes (GFAP-targeted luciferase activity), consistent with the proposed mechanism of action. These data reveal AST-004 as a novel A3R agonist that increases astrocyte energy production and enhances their neuroprotective efficacy after brain injury.


Subject(s)
Brain Injuries, Traumatic , Neuroprotective Agents , Adenosine/metabolism , Adenosine/pharmacology , Animals , Astrocytes/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Female , Gliosis/metabolism , Male , Mice , Mice, Inbred C57BL , Neuroprotection , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
11.
J Cereb Blood Flow Metab ; 40(6): 1256-1273, 2020 06.
Article in English | MEDLINE | ID: mdl-31272312

ABSTRACT

Nearly three million people in the USA suffer traumatic brain injury (TBI) yearly; however, there are no pre- or post-TBI treatment options available. KCNQ2-5 voltage-gated K+ channels underlie the neuronal "M current", which plays a dominant role in the regulation of neuronal excitability. Our strategy towards prevention of TBI-induced brain damage is predicated on the suggested hyper-excitability of neurons induced by TBIs, and the decrease in neuronal excitation upon pharmacological augmentation of M/KCNQ K+ currents. Seizures are very common after a TBI, making further seizures and development of epilepsy disease more likely. Our hypothesis is that TBI-induced hyperexcitability and ischemia/hypoxia lead to metabolic stress, cell death and a maladaptive inflammatory response that causes further downstream morbidity. Using the mouse controlled closed-cortical impact blunt TBI model, we found that systemic administration of the prototype M-channel "opener", retigabine (RTG), 30 min after TBI, reduces the post-TBI cascade of events, including spontaneous seizures, enhanced susceptibility to chemo-convulsants, metabolic stress, inflammatory responses, blood-brain barrier breakdown, and cell death. This work suggests that acutely reducing neuronal excitability and energy demand via M-current enhancement may be a novel model of therapeutic intervention against post-TBI brain damage and dysfunction.


Subject(s)
Anticonvulsants/pharmacology , Brain Injuries, Traumatic/metabolism , Carbamates/pharmacology , KCNQ Potassium Channels/metabolism , Neurons/drug effects , Neurons/metabolism , Phenylenediamines/pharmacology , Animals , Mice , Mice, Inbred C57BL
12.
J Neurotrauma ; 37(2): 248-261, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31025597

ABSTRACT

Repetitive blast traumatic brain injury (TBI) affects numerous soldiers on the battlefield. Mild TBI has been shown to have long-lasting effects with repeated injury. We have investigated effects on neuronal excitability after repetitive, mild TBI in a mouse model of blast-induced brain injury. We exposed mice to mild blast trauma of an average peak overpressure of 14.6 psi, repeated across three consecutive days. While a single exposure did not reveal trauma as indicated by the glial fibrillary acidic protein indicator, three repetitive blasts did show significant increases. As well, mice had an increased indicator of inflammation (Iba-1) and increased tau, tau phosphorylation, and altered cytokine levels in the spleen. Video-electroencephalographic monitoring 48 h after the final blast exposure demonstrated seizures in 50% (12/24) of the mice, most of which were non-convulsive seizures. Long-term monitoring revealed that spontaneous seizures developed in at least 46% (6/13) of the mice. Patch clamp recording of dentate gyrus hippocampus neurons 48 h post-blast TBI demonstrated a shortened latency to the first spike and hyperpolarization of action potential threshold. We also found that evoked excitatory postsynaptic current amplitudes were significantly increased. These findings indicate that mild, repetitive blast exposures cause increases in neuronal excitability and seizures and eventual epilepsy development in some animals. The non-convulsive nature of the seizures suggests that subclinical seizures may occur in individuals experiencing even mild blast events, if repeated.


Subject(s)
Blast Injuries/physiopathology , Brain Injuries, Traumatic/physiopathology , Neurons/pathology , Seizures/physiopathology , Animals , Blast Injuries/complications , Brain Injuries, Traumatic/complications , Disease Models, Animal , Epilepsy, Post-Traumatic/etiology , Male , Mice , Mice, Inbred C57BL , Seizures/etiology
13.
J Cereb Blood Flow Metab ; 37(2): 514-527, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26873887

ABSTRACT

We previously demonstrated that stimulation of astrocyte mitochondrial ATP production via P2Y1 receptor agonists was neuroprotective after cerebral ischemic stroke. Another mechanism that increases ATP production is fatty acid oxidation (FAO). We show that in primary human astrocytes, FAO and ATP production are stimulated by 3,3,5 triiodo-l-thyronine (T3). We tested whether T3-stimulated FAO enhances neuroprotection, and show that T3 increased astrocyte survival after either hydrogen peroxide exposure or oxygen glucose deprivation. T3-mediated ATP production and protection were both eliminated with etomoxir, an inhibitor of FAO. T3-mediated protection in vitro was also dependent on astrocytes expressing HADHA (hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase), which we previously showed was critical for T3-mediated FAO in fibroblasts. Consistent with previous reports, T3-treatment decreased stroke volumes in mice. While T3 decreased stroke volume in etomoxir-treated mice, T3 had no protective effect on stroke volume in HADHA +/- mice or in mice unable to upregulate astrocyte-specific energy production. In vivo, 95% of HADHA co-localize with glial-fibrillary acidic protein, suggesting the effect of HADHA is astrocyte mediated. These results suggest that astrocyte-FAO modulates lesion size and is required for T3-mediated neuroprotection post-stroke. To our knowledge, this is the first report of a neuroprotective role for FAO in the brain.


Subject(s)
Astrocytes/drug effects , Brain Ischemia/drug therapy , Fatty Acids/metabolism , Neuroprotective Agents/therapeutic use , Oxidation-Reduction/drug effects , Stroke/drug therapy , Triiodothyronine/therapeutic use , Adenosine Triphosphate/metabolism , Animals , Astrocytes/metabolism , Astrocytes/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cell Survival , Cells, Cultured , Female , Glial Fibrillary Acidic Protein/analysis , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Humans , Mice , Mice, Inbred C57BL , Mitochondrial Trifunctional Protein, alpha Subunit/analysis , Mitochondrial Trifunctional Protein, alpha Subunit/metabolism , Neuroprotection/drug effects , Neuroprotective Agents/metabolism , Stroke/metabolism , Stroke/pathology , Triiodothyronine/metabolism
14.
Cell Calcium ; 53(4): 286-96, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23415071

ABSTRACT

The endoplasmic reticulum (ER) is a Ca(2+) storing organelle that plays a critical role in the synthesis, folding and post-translational modifications of many proteins. The ER enters into a condition of stress when the load of newly synthesized proteins exceeds its folding and processing capacity. This activates a signal transduction pathway called the unfolded protein response (UPR) that attempts to restore homeostasis. The precise role of ER Ca(2+) in the initiation of the UPR has not been defined. Specifically, it has not been established whether ER Ca(2+) dysregulation is a cause or consequence of ER stress. Here, we report that partial depletion of ER Ca(2+) stores induces a significant induction of the UPR, and leads to the retention of a normally secreted protein Carboxypeptidase Y. Moreover, inhibition of protein glycosylation by tunicamycin rapidly induced an ER Ca(2+) leak into the cytosol. However, blockade of the translocon with emetine inhibited the tunicamycin-induced Ca(2+) release. Furthermore, emetine treatment blocked elF2α phosphorylation and reduced expression of the chaperone BiP. These findings suggest that Ca(2+) may be both a cause and a consequence of ER protein misfolding. Thus, it appears that ER Ca(2+) leak is a significant co-factor for the initiation of the UPR.


Subject(s)
Calcium/metabolism , Cathepsin A/metabolism , Endoplasmic Reticulum/metabolism , Oocytes/metabolism , Unfolded Protein Response , Animals , Cathepsin A/antagonists & inhibitors , Cytosol/drug effects , Cytosol/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum Stress/drug effects , Glycosylation/drug effects , Oocytes/cytology , Oocytes/drug effects , Protein Unfolding , Tunicamycin/pharmacology , Xenopus laevis
15.
J Cereb Blood Flow Metab ; 33(4): 600-11, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23321785

ABSTRACT

Glia-based neuroprotection strategies are emerging as promising new avenues to treat brain damage. We previously reported that activation of the glial-specific purinergic receptor, P2Y(1)R, reduces both astrocyte swelling and brain infarcts in a photothrombotic mouse model of stroke. These restorative effects were dependent on astrocyte mitochondrial metabolism. Here, we extend these findings and report that P2Y(1)R stimulation with the purinergic ligand 2-methylthioladenosine 5' diphosphate (2MeSADP) reduces and partially reverses neuronal damage induced by photothrombosis. In vivo neuronal morphology was confocally imaged in transgenic mice expressing yellow fluorescent protein under the control of the Thy1 promoter. Astrocyte mitochondrial membrane potentials, monitored with the potential sensitive dye tetra-methyl rhodamine methyl ester, were depolarized after photothrombosis and subsequently repolarized when P2Y(1)Rs were stimulated. Mice deficient in the astrocyte-specific type 2 inositol 1,4,5 trisphosphate (IP(3)) receptor exhibited aggravated ischemic dendritic damage after photothrombosis. Treatment of these mice with 2MeSADP did not invoke an intracellular Ca(2+) response, did not repolarize astrocyte mitochondria, and did not reduce or partially reverse neuronal lesions induced by photothrombotic stroke. These results demonstrate that IP(3)-Ca(2+) signaling in astrocytes is not only critical for P2Y(1)R-enhanced protection, but suggest that IP(3)-Ca(2+) signaling is also a key component of endogenous neuroprotection.


Subject(s)
Adenosine Diphosphate/pharmacology , Astrocytes/metabolism , Brain Ischemia/metabolism , Dendrites/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mitochondria/metabolism , Purinergic P2Y Receptor Agonists/pharmacology , Receptors, Purinergic P2Y1/metabolism , Adenosine Diphosphate/analogs & derivatives , Animals , Astrocytes/pathology , Brain Ischemia/drug therapy , Brain Ischemia/genetics , Brain Ischemia/pathology , Calcium Signaling/drug effects , Calcium Signaling/genetics , Dendrites/genetics , Dendrites/pathology , Inositol 1,4,5-Trisphosphate Receptors/genetics , Male , Mice , Mice, Transgenic , Mitochondria/genetics , Mitochondria/pathology , Receptors, Purinergic P2Y1/genetics
16.
Mol Endocrinol ; 26(7): 1117-28, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22570332

ABSTRACT

We previously demonstrated that the thyroid hormone, T(3), acutely stimulates mitochondrial metabolism in a thyroid hormone receptor (TR)-dependent manner. T(3) has also recently been shown to stimulate mitochondrial fatty acid oxidation (FAO). Here we report that TR-dependent stimulation of metabolism is mediated by the mitochondrial trifunctional protein (MTP), the enzyme responsible for long-chain FAO. Stimulation of FAO was significant in cells that expressed a nonnuclear amino terminus shortened TR isoform (sTR(43)) but not in adult fibroblasts cultured from mice deficient in both TRα and TRß isoforms (TRα(-/-)ß(-/-)). Mouse embryonic fibroblasts deficient in MTP (MTP(-/-)) did not support T(3)-stimulated FAO. Inhibition of fatty-acid trafficking into mitochondria using the AMP-activated protein kinase inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyrrazolo[1,5-a]-pyrimidine (compound C) or the carnitine palmitoyltransferase 1 inhibitor etomoxir prevented T(3)-stimulated FAO. However, T(3) treatment could increase FAO when AMP-activated protein kinase was maximally activated, indicating an alternate mechanism of T(3)-stimulated FAO exists, even when trafficking is presumably high. MTPα protein levels and higher molecular weight complexes of MTP subunits were increased by T(3) treatment. We suggest that T(3)-induced increases in mitochondrial metabolism are at least in part mediated by a T(3)-shortened TR isoform-dependent stabilization of the MTP complex, which appears to lower MTP subunit turnover.


Subject(s)
Mitochondria/metabolism , Multienzyme Complexes/metabolism , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormone Receptors beta/metabolism , Thyroid Hormones/metabolism , AMP-Activated Protein Kinases/antagonists & inhibitors , AMP-Activated Protein Kinases/metabolism , Animals , Carnitine O-Palmitoyltransferase/antagonists & inhibitors , Cells, Cultured , Enzyme Activation , Epoxy Compounds/pharmacology , Fatty Acids/metabolism , Female , Mice , Mitochondrial Trifunctional Protein , Multienzyme Complexes/deficiency , Oxidation-Reduction , Protein Transport , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Xenopus laevis
17.
PLoS One ; 5(8): e11925, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20700529

ABSTRACT

BACKGROUND: The accumulation of misfolded proteins within the endoplasmic reticulum (ER) triggers a cellular process known as the Unfolded Protein Response (UPR). One of the earliest responses is the attenuation of protein translation. Little is known about the role that Ca2+ mobilization plays in the early UPR. Work from our group has shown that cytosolic phosphorylation of calnexin (CLNX) controls Ca2+ uptake into the ER via the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) 2b. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate that calcineurin (CN), a Ca2+ dependent phosphatase, associates with the (PKR)-like ER kinase (PERK), and promotes PERK auto-phosphorylation. This association, in turn, increases the phosphorylation level of eukaryotic initiation factor-2 alpha (eIF2-alpha) and attenuates protein translation. Data supporting these conclusions were obtained from co-immunoprecipitations, pull-down assays, in-vitro kinase assays, siRNA treatments and [35S]-methionine incorporation measurements. The interaction of CN with PERK was facilitated at elevated cytosolic Ca2+ concentrations and involved the cytosolic domain of PERK. CN levels were rapidly increased by ER stressors, which could be blocked by siRNA treatments for CN-Aalpha in cultured astrocytes. Downregulation of CN blocked subsequent ER-stress-induced increases in phosphorylated elF2-alpha. CN knockdown in Xenopus oocytes predisposed them to induction of apoptosis. We also found that CLNX was dephosphorylated by CN when Ca2+ increased. These data were obtained from [gamma32P]-CLNX immunoprecipitations and Ca2+ imaging measurements. CLNX was dephosphorylated when Xenopus oocytes were treated with ER stressors. Dephosphorylation was pharmacologically blocked by treatment with CN inhibitors. Finally, evidence is presented that PERK phosphorylates CN-A at low resting levels of Ca2+. We further show that phosphorylated CN-A exhibits decreased phosphatase activity, consistent with this regulatory mechanism being shut down as ER homeostasis is re-established. CONCLUSIONS/SIGNIFICANCE: Our data suggest two new complementary roles for CN in the regulation of the early UPR. First, CN binding to PERK enhances inhibition of protein translation to allow the cell time to recover. The induction of the early UPR, as indicated by increased P-elF2alpha, is critically dependent on a translational increase in CN-Aalpha. Second, CN dephosphorylates CLNX and likely removes inhibition of SERCA2b activity, which would aid the rapid restoration of ER Ca2+ homeostasis.


Subject(s)
Anura , Calcineurin/metabolism , Calnexin/metabolism , Endoplasmic Reticulum/metabolism , Stress, Physiological , eIF-2 Kinase/metabolism , Animals , Apoptosis/drug effects , Astrocytes/metabolism , Calcineurin/deficiency , Calcineurin/genetics , Calcium/metabolism , Cytosol/drug effects , Cytosol/metabolism , Endoplasmic Reticulum/drug effects , Eukaryotic Initiation Factor-2/metabolism , Gene Knockdown Techniques , Homeostasis/drug effects , Humans , Mice , Oocytes/metabolism , Phosphorylation , Protein Binding , Protein Biosynthesis/drug effects , Protein Folding/drug effects , Rats , Stress, Physiological/drug effects , Time Factors , Tunicamycin/pharmacology , Xenopus
18.
PLoS One ; 5(12): e14401, 2010 Dec 22.
Article in English | MEDLINE | ID: mdl-21203502

ABSTRACT

Treatments to improve the neurological outcome of edema and cerebral ischemic stroke are severely limited. Here, we present the first in vivo single cell images of cortical mouse astrocytes documenting the impact of single vessel photothrombosis on cytotoxic edema and cerebral infarcts. The volume of astrocytes expressing green fluorescent protein (GFP) increased by over 600% within 3 hours of ischemia. The subsequent growth of cerebral infarcts was easily followed as the loss of GFP fluorescence as astrocytes lysed. Cytotoxic edema and the magnitude of ischemic lesions were significantly reduced by treatment with the purinergic ligand 2-methylthioladenosine 5' diphosphate (2-MeSADP), an agonist with high specificity for the purinergic receptor type 1 isoform (P2Y(1)R). At 24 hours, cytotoxic edema in astrocytes was still apparent at the penumbra and preceded the cell lysis that defined the infarct. Delayed 2MeSADP treatment, 24 hours after the initial thrombosis, also significantly reduced cytotoxic edema and the continued growth of the brain infarction. Pharmacological and genetic evidence are presented indicating that 2MeSADP protection is mediated by enhanced astrocyte mitochondrial metabolism via increased inositol trisphosphate (IP(3))-dependent Ca(2+) release. We suggest that mitochondria play a critical role in astrocyte energy metabolism in the penumbra of ischemic lesions, where low ATP levels are widely accepted to be responsible for cytotoxic edema. Enhancement of this energy source could have similar protective benefits for a wide range of brain injuries.


Subject(s)
Brain Infarction/metabolism , Edema/metabolism , Mitochondria/metabolism , Neuroglia/metabolism , Receptors, Purinergic/metabolism , Thrombosis/metabolism , Adenosine Diphosphate/analogs & derivatives , Adenosine Diphosphate/pharmacology , Animals , Astrocytes/cytology , Astrocytes/metabolism , Cerebral Infarction/pathology , Inositol 1,4,5-Trisphosphate/metabolism , Light , Male , Mice , Receptors, Purinergic P2Y1/metabolism , Thionucleotides/pharmacology
19.
Free Radic Biol Med ; 47(3): 312-20, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19447173

ABSTRACT

Glutathione peroxidase 4 (Gpx4) is a unique antioxidant enzyme that repairs oxidative damage to biomembranes. In this study, we examined the effects of Gpx4 on the release of various apoptogenic proteins from mitochondria using transgenic mice overexpressing Gpx4 [Tg(GPX4(+/0))] and mice deficient in Gpx4 (Gpx4+/- mice). Diquat exposure triggered apoptosis that occurred through an intrinsic pathway and resulted in the mitochondrial release of cytochrome c (Cyt c), Smac/DIABLO, and Omi/HtrA2 in the liver of wild-type (Wt) mice. Liver apoptosis and Cyt c release were suppressed in Tg(GPX4(+/0)) mice but exacerbated in Gpx4+/- mice; however, neither the Tg(GPX4(+/0)) nor the Gpx4+/- mice showed any alterations in the levels of Smac/DIABLO or Omi/HtrA2 released from mitochondria. Submitochondrial fractionation data showed that Smac/DIABLO and Omi/HtrA2 existed primarily in the intermembrane space and matrix, whereas Cyt c and Gpx4 were both associated with the inner membrane. In addition, diquat exposure induced cardiolipin peroxidation in the liver of Wt mice; the levels of cardiolipin peroxidation were reduced in Tg(GPX4(+/0)) mice but elevated in Gpx4+/- mice. These data suggest that Gpx4 differentially regulates apoptogenic protein release owing to its inner membrane location in mitochondria and its ability to repair cardiolipin peroxidation.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Cytochromes c/metabolism , Glutathione Peroxidase/genetics , Mitochondria, Liver/metabolism , Mitochondrial Membranes/metabolism , Animals , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cardiolipins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Diquat/metabolism , Glutathione Peroxidase/metabolism , High-Temperature Requirement A Serine Peptidase 2 , Lipid Peroxidation , Mice , Mice, Transgenic , Mitochondria, Liver/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase , Protein Transport/physiology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
20.
Neurobiol Aging ; 28(1): 99-111, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16359757

ABSTRACT

Age-related changes in astrocytes that could potentially affect neuroprotection have been largely unexplored. To test whether astrocyte function was diminished during the aging process, we examined cell growth, Ca2+ signaling, mitochondrial membrane potential (DeltaPsi) and neuroprotection of NGF-differentiated PC12 cells. We observed that cell growth was significantly slower for astrocytes cultured from old (26-29 months) mice as compared to young (4-6 months) mice. DeltaPsis in old astrocytes were also more depolarized (lower) than in young astrocytes and old astrocytes showed greater sensitivity to the oxidant tert-butyl hydrogen peroxide (t-BuOOH). ATP-induced Ca2+ responses in old astrocytes were consistently larger in amplitude and more frequently oscillatory than in young astrocytes, which may be attributable to lower mitochondrial Ca2+ sequestration. Finally, NGF-differentiated PC12 cells that were co-cultured with old astrocytes were significantly more sensitive to t-BuOOH treatment than co-cultures of NGF-differentiated PC12 cells with young astrocytes. Together, these data demonstrate that astrocyte physiology is significantly altered during the aging process and that the astrocyte's ability to protect neurons is compromised.


Subject(s)
Aging/physiology , Astrocytes/physiology , Calcium Signaling/physiology , Cytoprotection/physiology , Membrane Potential, Mitochondrial/physiology , Mitochondria/physiology , Oxidative Stress/physiology , Animals , Cells, Cultured , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL