Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.330
Filter
Add more filters

Publication year range
1.
Nature ; 629(8012): 660-668, 2024 May.
Article in English | MEDLINE | ID: mdl-38693258

ABSTRACT

Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide1. Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated2,3. The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1-Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy.


Subject(s)
Cell- and Tissue-Based Therapy , Endothelial Cells , Ischemia , Mitochondria , Mitophagy , Animals , Humans , Male , Mice , Autophagosomes/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/transplantation , Energy Metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Ischemia/metabolism , Ischemia/therapy , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice, Nude , Mitochondria/metabolism , Mitochondria/transplantation , Protein Kinases/deficiency , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/metabolism , Cell- and Tissue-Based Therapy/methods
2.
Nature ; 617(7962): 798-806, 2023 May.
Article in English | MEDLINE | ID: mdl-37138087

ABSTRACT

Inorganic phosphate (Pi) is one of the essential molecules for life. However, little is known about intracellular Pi metabolism and signalling in animal tissues1. Following the observation that chronic Pi starvation causes hyperproliferation in the digestive epithelium of Drosophila melanogaster, we determined that Pi starvation triggers the downregulation of the Pi transporter PXo. In line with Pi starvation, PXo deficiency caused midgut hyperproliferation. Interestingly, immunostaining and ultrastructural analyses showed that PXo specifically marks non-canonical multilamellar organelles (PXo bodies). Further, by Pi imaging with a Förster resonance energy transfer (FRET)-based Pi sensor2, we found that PXo restricts cytosolic Pi levels. PXo bodies require PXo for biogenesis and undergo degradation following Pi starvation. Proteomic and lipidomic characterization of PXo bodies unveiled their distinct feature as an intracellular Pi reserve. Therefore, Pi starvation triggers PXo downregulation and PXo body degradation as a compensatory mechanism to increase cytosolic Pi. Finally, we identified connector of kinase to AP-1 (Cka), a component of the STRIPAK complex and JNK signalling3, as the mediator of PXo knockdown- or Pi starvation-induced hyperproliferation. Altogether, our study uncovers PXo bodies as a critical regulator of cytosolic Pi levels and identifies a Pi-dependent PXo-Cka-JNK signalling cascade controlling tissue homeostasis.


Subject(s)
Drosophila melanogaster , Homeostasis , Organelles , Phosphates , Animals , Adaptor Proteins, Signal Transducing/metabolism , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Drosophila Proteins/deficiency , Drosophila Proteins/metabolism , Organelles/metabolism , Phosphates/deficiency , Phosphates/metabolism , Proteomics , Fluorescence Resonance Energy Transfer , Lipidomics , Cytosol/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism
3.
Mol Cell ; 81(10): 2064-2075.e8, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33756105

ABSTRACT

Dysregulated mTORC1 signaling alters a wide range of cellular processes, contributing to metabolic disorders and cancer. Defining the molecular details of downstream effectors is thus critical for uncovering selective therapeutic targets. We report that mTORC1 and its downstream kinase S6K enhance eIF4A/4B-mediated translation of Wilms' tumor 1-associated protein (WTAP), an adaptor for the N6-methyladenosine (m6A) RNA methyltransferase complex. This regulation is mediated by 5' UTR of WTAP mRNA that is targeted by eIF4A/4B. Single-nucleotide-resolution m6A mapping revealed that MAX dimerization protein 2 (MXD2) mRNA contains m6A, and increased m6A modification enhances its degradation. WTAP induces cMyc-MAX association by suppressing MXD2 expression, which promotes cMyc transcriptional activity and proliferation of mTORC1-activated cancer cells. These results elucidate a mechanism whereby mTORC1 stimulates oncogenic signaling via m6A RNA modification and illuminates the WTAP-MXD2-cMyc axis as a potential therapeutic target for mTORC1-driven cancers.


Subject(s)
Adenosine/analogs & derivatives , Mechanistic Target of Rapamycin Complex 1/metabolism , RNA Stability , Adenosine/metabolism , Animals , Base Sequence , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Eukaryotic Initiation Factors/metabolism , HEK293 Cells , Humans , Male , Mice , Models, Biological , Protein Biosynthesis , Proto-Oncogene Proteins c-myc/metabolism , RNA Splicing Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction
4.
Hum Mol Genet ; 32(22): 3181-3193, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37622920

ABSTRACT

Prostate cancer (PCa) brings huge public health burden in men. A growing number of conventional observational studies report associations of multiple circulating proteins with PCa risk. However, the existing findings may be subject to incoherent biases of conventional epidemiologic studies. To better characterize their associations, herein, we evaluated associations of genetically predicted concentrations of plasma proteins with PCa risk. We developed comprehensive genetic prediction models for protein levels in plasma. After testing 1308 proteins in 79 194 cases and 61 112 controls of European ancestry included in the consortia of BPC3, CAPS, CRUK, PEGASUS, and PRACTICAL, 24 proteins showed significant associations with PCa risk, including 16 previously reported proteins and eight novel proteins. Of them, 14 proteins showed negative associations and 10 showed positive associations with PCa risk. For 18 of the identified proteins, potential functional somatic changes of encoding genes were detected in PCa patients in The Cancer Genome Atlas (TCGA). Genes encoding these proteins were significantly involved in cancer-related pathways. We further identified drugs targeting the identified proteins, which may serve as candidates for drug repurposing for treating PCa. In conclusion, this study identifies novel protein biomarker candidates for PCa risk, which may provide new perspectives on the etiology of PCa and improve its therapeutic strategies.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Blood Proteins/genetics , Biomarkers, Tumor/genetics
5.
Hum Mol Genet ; 31(7): 1067-1081, 2022 03 31.
Article in English | MEDLINE | ID: mdl-34673960

ABSTRACT

At present, there have only been a few DNA sequencing-based studies to explore the genetic determinants of bone mineral density (BMD). We carried out the largest whole genome sequencing analysis to date for femoral neck and spine BMD (n = 4981), with one of the highest average sequencing depths implemented thus far at 22×, in a multiethnic sample (58% Caucasian and 42% African American) from the Louisiana Osteoporosis Study (LOS). The LOS samples were combined with summary statistics from the GEFOS consortium and several independent samples of various ethnicities to perform GWAS meta-analysis (n = 44 506). We identified 31 and 30 genomic risk loci for femoral neck and spine BMD, respectively. The findings substantiate many previously reported susceptibility loci (e.g. WNT16 and ESR1) and reveal several others that are either novel or have not been widely replicated in GWAS for BMD, including two for femoral neck (IGF2 and ZNF423) and one for spine (SIPA1). Although we were not able to uncover ethnicity specific differences in the genetic determinants of BMD, we did identify several loci which demonstrated sex-specific associations, including two for women (PDE4D and PIGN) and three for men (TRAF3IP2, NFIB and LYSMD4). Gene-based rare variant association testing detected MAML2, a regulator of the Notch signaling pathway, which has not previously been suggested, for association with spine BMD. The findings provide novel insights into the pathophysiological mechanisms of osteoporosis.


Subject(s)
Bone Density , Genome-Wide Association Study , Bone Density/genetics , Female , Femur Neck/physiology , Humans , Male , Polymorphism, Single Nucleotide/genetics , Whole Genome Sequencing
6.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35225328

ABSTRACT

N6-methyladenine (6mA) is associated with important roles in DNA replication, DNA repair, transcription, regulation of gene expression. Several experimental methods were used to identify DNA modifications. However, these experimental methods are costly and time-consuming. To detect the 6mA and complement these shortcomings of experimental methods, we proposed a novel, deep leaning approach called BERT6mA. To compare the BERT6mA with other deep learning approaches, we used the benchmark datasets including 11 species. The BERT6mA presented the highest AUCs in eight species in independent tests. Furthermore, BERT6mA showed higher and comparable performance with the state-of-the-art models while the BERT6mA showed poor performances in a few species with a small sample size. To overcome this issue, pretraining and fine-tuning between two species were applied to the BERT6mA. The pretrained and fine-tuned models on specific species presented higher performances than other models even for the species with a small sample size. In addition to the prediction, we analyzed the attention weights generated by BERT6mA to reveal how the BERT6mA model extracts critical features responsible for the 6mA prediction. To facilitate biological sciences, the BERT6mA online web server and its source codes are freely accessible at https://github.com/kuratahiroyuki/BERT6mA.git, respectively.


Subject(s)
Deep Learning , DNA/genetics , DNA Methylation , Software
7.
Opt Express ; 32(7): 12200-12212, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571050

ABSTRACT

As an integral component of the laser interferometry measurement system, the tilt-to-length (TTL) coupling noise inside the telescope stands out as a critical noise factor that requires meticulous consideration. In the TianQin project, the non-geometric TTL-coupled noise inside the telescope should be less than 0.22 pm/Hz1/2. Additionally, the wavefront aberration RMS at the small pupil of the telescope needs to be better than 0.0065 λ. These requirements set for the telescope are exceptionally stringent. To address this challenge, this study aims to relax the wavefront aberration requirements by mitigating non-geometric TTL coupling noise, while ensuring the non-geometric TTL coupling noise remains below 0.22 pm/Hz1/2. By controlling the coupling aberration proportion, the wavefront aberration RMS at the small pupil of the telescope can be relaxed to 0.014 λ. Alternatively, optimizing the Gaussian beam waist radius can relax the wavefront aberration RMS to 0.016 λ. By simultaneously utilizing two optimization methods, the wavefront aberration at the small pupil of the telescope can be reduced to 0.033 λ, resulting in an impressive success rate of 91.15% in meeting the noise requirements.

8.
Osteoporos Int ; 35(5): 785-794, 2024 May.
Article in English | MEDLINE | ID: mdl-38246971

ABSTRACT

Hip fracture risk assessment is an important but challenging task. Quantitative CT-based patient-specific finite element (FE) analysis (FEA) incorporates bone geometry and bone density in the proximal femur. We developed a global FEA-computed fracture risk index to increase the prediction accuracy of hip fracture incidence. PURPOSE: Quantitative CT-based patient-specific finite element (FE) analysis (FEA) incorporates bone geometry and bone density in the proximal femur to compute the force (fracture load) and energy necessary to break the proximal femur in a particular loading condition. The fracture loads and energies-to-failure are individually associated with incident hip fracture, and provide different structural information about the proximal femur. METHODS: We used principal component analysis (PCA) to develop a global FEA-computed fracture risk index that incorporates the FEA-computed yield and ultimate failure loads and energies-to-failure in four loading conditions of 110 hip fracture subjects and 235 age- and sex-matched control subjects from the AGES-Reykjavik study. Using a logistic regression model, we compared the prediction performance for hip fracture based on the stratified resampling. RESULTS: We referred the first principal component (PC1) of the FE parameters as the global FEA-computed fracture risk index, which was the significant predictor of hip fracture (p-value < 0.001). The area under the receiver operating characteristic curve (AUC) using PC1 (0.776) was higher than that using all FE parameters combined (0.737) in the males (p-value < 0.001). CONCLUSIONS: The global FEA-computed fracture risk index increased hip fracture risk prediction accuracy in males.


Subject(s)
Hip Fractures , Proximal Femoral Fractures , Male , Humans , Hip Fractures/epidemiology , Hip Fractures/etiology , Bone Density , Femur/diagnostic imaging , ROC Curve , Finite Element Analysis
9.
Mov Disord ; 39(5): 847-854, 2024 May.
Article in English | MEDLINE | ID: mdl-38477228

ABSTRACT

BACKGROUND: As a biomarker targeting vesicular monoamine transporter 2 (VMAT2), 18F-9-fluoropropyldihydrotetrabenazine (18F-FP-DTBZ) positron emission tomography (PET) is highly accurate in diagnosing Parkinson's disease (PD) and assessing its severity. However, evidence is insufficient in patients with progressive supranuclear palsy (PSP). OBJECTIVE: We evaluated the striatal and extrastriatal monoaminergic disruption of PSP and differences in patterns between patients with PSP, PD, and healthy controls (HCs) using 18F-FP-DTBZ PET, as well as its correlations with the clinical characteristics of PSP. METHODS: We recruited 58 patients with PSP, 23 age- and duration-matched patients with PD, as well as 17 HCs. Patients were scanned using 18F-FP-DTBZ PET/computed tomography, and images were spatially normalized and analyzed based on the volume of interest. RESULTS: VMAT2 binding differed significantly in the striatum and substantia nigra among the groups (P < 0.001). A more severe disruption in the caudate was noted in the PSP group (P < 0.001) than in the PD group. However, no differences were found in the nucleus accumbens, hippocampus, amygdala, or raphe between the PD and PSP groups. Within the PSP group, striatal VMAT2 binding was significantly associated with the fall/postural stability subscore of the PSP Rating Scale, especially in the putamen. Furthermore, VMAT2 binding was correlated with Mini-Mental State Examination or Montreal Cognitive Assessment in the hippocampus. CONCLUSIONS: Caudate disruptions showed prominent differences among the groups. VAMT2 binding in the striatum and hippocampus reflects the severity of fall/postural stability and cognition, respectively. © 2024 International Parkinson and Movement Disorder Society.


Subject(s)
Corpus Striatum , Parkinson Disease , Supranuclear Palsy, Progressive , Vesicular Monoamine Transport Proteins , Humans , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/metabolism , Male , Female , Aged , Middle Aged , Vesicular Monoamine Transport Proteins/metabolism , Corpus Striatum/metabolism , Corpus Striatum/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography/methods , Tetrabenazine/analogs & derivatives , Substantia Nigra/diagnostic imaging , Substantia Nigra/metabolism , Substantia Nigra/pathology , Positron Emission Tomography Computed Tomography/methods
10.
Prenat Diagn ; 44(2): 167-171, 2024 02.
Article in English | MEDLINE | ID: mdl-37749763

ABSTRACT

OBJECTIVE: To elucidate an etiology in a case with persistent oligohydramnios by prenatal diagnosis and actively treat the case to achieve good prognosis. METHODS: We performed whole exome sequencing (WES) of DNA from the fetus and parents. Serial amnioinfusions were conducted until birth. Pressors were required to maintain normal blood pressure. The infant angiotensin-converting enzyme (ACE) activity, angiotensin II (Ang II, a downstream product of ACE), and compensatory enzymes (CEs) activities were measured. Compensatory enzyme activities in plasma from age-matched healthy controls were also detected. RESULTS: We identified a fetus with a severe ACE mutation prenatally. The infant was born prematurely without pulmonary dysplasia. Hypotension and anuria resolved spontaneously. He had almost no ACE activity, but his Ang II level and CE activity exceeded the upper limit of the normal range and the upper limit of the 95% confidence interval of controls, respectively. His renal function also largely recovered. CONCLUSION: Fetuses with ACE mutations can be diagnosed prenatally through WES. Serial amnioinfusion permits the continuation of pregnancy in fetal ACE deficiency. Compensatory enzymes for defective ACE appeared postnatally. Renal function may be spared by preterm delivery; furthermore, for postnatal vasopressor therapy to begin, improving renal perfusion pressure before nephrogenesis has been completed.


Subject(s)
Oligohydramnios , Peptidyl-Dipeptidase A , Pregnancy , Infant, Newborn , Male , Female , Humans , Peptidyl-Dipeptidase A/genetics , Prenatal Diagnosis , Fetus , Oligohydramnios/diagnostic imaging , Oligohydramnios/therapy , Delivery, Obstetric
11.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33602816

ABSTRACT

Cell membrane-targeted bioimaging is a prerequisite for studying the roles of membrane-associated biomolecules in various physiological and pathological processes. However, long-term in situ bioimaging on the cell membrane with conventional fluorescent probes leads to diffusion into cells from the membrane surface. Therefore, we herein proposed a de novo strategy to construct an antidiffusion probe by integrating a fluorochrome characterized by strong hydrophobicity and low lipophilicity, with an enzyme substrate to meet this challenge. This precipitating fluorochrome HYPQ was designed by conjugating the traditionally strong hydrophobic solid-state fluorochrome 6-chloro-2-(2-hydroxyphenyl) quinazolin-4(3H)-one (HPQ) with a 2-(2-methyl-4H-chromen-4-ylidene) malononitrile group to obtain closer stacking to lower lipophilicity and elongate emission to the far-red to near-infrared wavelength. As proof-of-concept, the membrane-associated enzyme γ-glutamyltranspeptidase (GGT) was selected as a model enzyme to design the antidiffusion probe HYPQG. Then, benefiting from the precipitating and stable signal properties of HYPQ, in situ imaging of GGT on the membrane was successfully realized. Moreover, after HYPQG was activated by GGT, the fluorescence signal on the cell membrane remained unchanged, with incubation time even extending to 6 h, which is significant for in situ monitoring of enzymatic activity. In vivo testing subsequently showed that the tumor region could be accurately defined by this probe after long-term in situ imaging of tumor-bearing mice. The excellent performance of HYPQ indicates that it may be an ideal alternative for constructing universal antidiffusion fluorescent probes, potentially providing an efficient tool for accurate imaging-guided surgery in the future.


Subject(s)
Cell Membrane , Fluorescent Dyes/chemistry , Molecular Imaging/methods , Spectroscopy, Near-Infrared/methods , Animals , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/metabolism , Diffusion , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Hep G2 Cells , Humans , Mice , NIH 3T3 Cells , Neoplasms, Experimental/diagnostic imaging , Proof of Concept Study , Quinazolinones/chemistry , Xenograft Model Antitumor Assays , gamma-Glutamyltransferase/analysis , gamma-Glutamyltransferase/metabolism
12.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33649236

ABSTRACT

Mechanistic Target of Rapamycin Complex 1 (mTORC1) is a central regulator of cell growth and metabolism that senses and integrates nutritional and environmental cues with cellular responses. Recent studies have revealed critical roles of mTORC1 in RNA biogenesis and processing. Here, we find that the m6A methyltransferase complex (MTC) is a downstream effector of mTORC1 during autophagy in Drosophila and human cells. Furthermore, we show that the Chaperonin Containing Tailless complex polypeptide 1 (CCT) complex, which facilitates protein folding, acts as a link between mTORC1 and MTC. The mTORC1 activates the chaperonin CCT complex to stabilize MTC, thereby increasing m6A levels on the messenger RNAs encoding autophagy-related genes, leading to their degradation and suppression of autophagy. Altogether, our study reveals an evolutionarily conserved mechanism linking mTORC1 signaling with m6A RNA methylation and demonstrates their roles in suppressing autophagy.


Subject(s)
Autophagy , Drosophila Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Methyltransferases/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/metabolism , Signal Transduction , Animals , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Methylation , Methyltransferases/genetics , Orphan Nuclear Receptors , RNA Stability , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics
13.
Genomics ; 115(3): 110603, 2023 05.
Article in English | MEDLINE | ID: mdl-36893872

ABSTRACT

The genetic code has degenerate codons that produce no change in the translated protein sequence and are generally thought to be silent. However, some synonymous variants are clearly not silent. Herein, we questioned the frequency of non-silent synonymous variants. We tested how random synonymous variants in the HIV Tat transcription factor effect transcription of an LTR-GFP reporter. Our model system has the advantage of directly measuring the function of the gene in human cells. Approximately, 67% of synonymous variants in Tat were non-silent, either having reduced activity or were full loss-of-function alleles. Eight mutant codons had higher codon usage than wild type, accompanied by reduced transcriptional activity. These were clustered on a loop in the Tat structure. We conclude that most synonymous Tat variants are not silent in human cells, and 25% are associated with changes in codon usage, likely effecting protein folding.


Subject(s)
Codon Usage , HIV Infections , Humans , Alleles , Codon , Silent Mutation , HIV Infections/genetics
14.
J Craniofac Surg ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861352

ABSTRACT

OBJECTIVE: To summarize the application experience of the pneumatic arm in transnasal sphenoidal pituitary adenoma resection under neuroendoscope. METHODS: A retrospective analysis was conducted on the clinical data of 52 patients with pituitary adenoma who underwent endoscopic transsphenoidal surgery with pneumatic arm fixation in the Neurosurgery Department of the First Affiliated Hospital of Anhui Medical University from July 2021 to March 2024. Among them, there were 5 cases of pituitary microadenoma, 35 cases of macroadenoma, and 12 cases of giant adenoma. Head CT and a full set of hormones were re-examined within 24 hours after surgery to evaluate the surgical effect. Follow-up was conducted by the outpatient department after surgery to assess the clinical symptoms, hormone level, and imaging of all patients. RESULTS: Among 52 patients, gross total resection was achieved in 48 cases (92.3%), subtotal resection in 3 cases (5.8%), and partial resection in 1 case (1.9%). Preoperatively, 43 patients had diminished vision, with 40 showing improvement postoperatively, 1 worsening, and 2 having no significant improvement. Thirty-eight patients had headaches preoperatively, and all showed varying degrees of improvement postoperatively. Routine hormone examination within 24 hours after surgery showed that all 20 prolactinoma patients had restored normal hormone levels, 10 of 12 growth hormone-secreting adenoma patients normalized, and 4 of 6 cases of adrenocorticotropic hormone-secreting adenoma immediately relieved after surgery. Postoperative complications included intracranial hematoma in 1 case, cerebrospinal fluid leakage in 2 cases, transient diabetes insipidus in 6 cases, intracranial infection in 1 case, and no death cases. The median follow-up time of 52 patients was 18.6 months (range: 1-32 mo). During the follow-up period, the initial clinical symptoms of all patients improved to varying degrees, and they were able to work and live normally. At the last follow-up, 1 patient had recurrent tumor and 1 patient had progression. CONCLUSION: Transnasal sphenoidal resection of pituitary adenoma using a pneumatic arm-fixed neuroendoscope allows the operator to perform the surgery with both hands, resulting in satisfactory overall tumor resection and fewer surgical complications. This technique has good clinical value for promotion.

15.
Int J Food Sci Nutr ; 75(6): 537-549, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38918932

ABSTRACT

Cow milk consumption (CMC) and downstream alterations of serum metabolites are commonly considered important factors regulating human health status. Foods may lead to metabolic changes directly or indirectly through remodelling gut microbiota (GM). We sought to identify the metabolic alterations in Chinese Peri-/Postmenopausal women with habitual CMC and explore if the GM mediates the CMC-metabolite associations. 346 Chinese Peri-/Postmenopausal women participants were recruited in this study. Fixed effects regression and partial least squares discriminant analysis (PLS-DA) were applied to reveal alterations of serum metabolic features in different CMC groups. Spearman correlation coefficient was computed to detect metabolome-metagenome association. 36 CMC-associated metabolites including palmitic acid (FA(16:0)), 7alpha-hydroxy-4-cholesterin-3-one (7alphaC4), citrulline were identified by both fixed effects regression (FDR < 0.05) and PLS-DA (VIP score > 2). Some significant metabolite-GM associations were observed, including FA(16:0) with gut species Bacteroides ovatus, Bacteroides sp.D2. These findings would further prompt our understanding of the effect of cow milk on human health.


Subject(s)
Gastrointestinal Microbiome , Milk , Postmenopause , Humans , Female , Animals , Middle Aged , Postmenopause/blood , China , Cattle , Citrulline/blood , Aged , Diet , Metabolome , Bacteroides , East Asian People
16.
Int Orthop ; 48(6): 1489-1499, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38443716

ABSTRACT

PURPOSE: To compare the outcomes of type II pediatric phalangeal neck fractures (PPNFs) treated with closed reduction and cast immobilization (CRCI) versus closed reduction percutaneous pinning (CRPP), and evaluated the clinical efficacy of conservative versus surgical treatment of type II PPNFs via meta-analysis. METHODS: Patients aged ≤ 14 years with type II PPNFs were divided into conservative (CRCI) and operative (CRPP) groups. Radiographs measured angulation and translation; hand function was assessed with total active range of motion (TAM) and Quick-DASH. Complication rates were also compared between the groups. A meta-analysis of conservative versus operative treatment confirmed the clinical results. Statistical analysis was performed using SPSS 26.0 and R studio 3.0 with two-tailed, chi-squared, and Mann-Whitney U or t-tests, P < 0.05. Meta-analysis used fixed or random effects models, calculating mean differences and odds ratios for outcomes, and assessing heterogeneity with I2 and Q tests. RESULTS: Final angulation (3.4° ± 3.7° and 4.9° ± 5.4° vs. 3.6° ± 3.7° and 4.2° ± 4.3°) and displacement (6.3% ± 5.8% and 5.7% ± 4.7% vs. 5.8% ± 5.5% and 3.2% ± 4.2%) in the coronal and sagittal planes were not different statistically between the conservative and surgical groups (P > 0.05), but improved significantly compared to preoperative values (P < 0.05). Although Quick-DASH scores were comparable in both groups (P = 0.105), conservatively treated patients had a significantly better TAM at the last follow-up visit (P = 0.005). The complication rates were 24.2% and 41.7% in the surgical and conservatively treated groups respectively (P = 0.162). However, the latter primarily experienced imaging-related complications, whereas the former experienced functional complications (P = 0.046). Our meta-analysis (n = 181 patients) also showed comparable functional (P = 0.49) and radiographic (P = 0.59) outcomes and complication rates (P = 0.21) between the surgical (94 patients) and conservative (87 patients) groups. CONCLUSIONS: Conservative and surgical treatments are both reliable and safe approaches for managing type II PPNF in children. However, conservatively treated patients generally experience similar radiographic outcomes, lower complication rates, and better functional outcomes than surgically treated ones.


Subject(s)
Bone Wires , Casts, Surgical , Finger Phalanges , Humans , Child , Finger Phalanges/injuries , Finger Phalanges/surgery , Male , Female , Adolescent , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/adverse effects , Treatment Outcome , Fractures, Bone/surgery , Range of Motion, Articular , Child, Preschool
17.
Environ Geochem Health ; 46(10): 379, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167328

ABSTRACT

In recent years, the prevalence and danger of organophosphorus flame retardants (OPFRs) have drawn attention from all around the world. This study examined twenty-five OPFRs observed in water and sediment samples from the Qiantang River in eastern China, as well as their occurrence, spatial distribution, possible origins, and ecological hazards. All the 25 OPFRs were detected in water and sediment samples. The levels of Σ25OPFRs in water and sediment were 35.5-192 ng/L and 8.84-48.5 ng/g dw, respectively. Chlorinated OPFRs were the main contributions in water, whereas alkyl-OPFRs were the most common congeners found in sediment. Spatial analysis revealed that sample locations in neighboring cities had somewhat higher water concentrations of OPFRs. Slowing down the river current and making the reservoir the main sink of OPFRs, the dam can prevent OPFRs from moving via the Qiantang River. Positive matrix factorization indicated that plasticizer in polyvinyl chloride, polyester resins, and polyurethane foam made the greatest contributions in water, whereas polyurethane foam and textile were the predominant source in sediment. Analysis of sediment-water exchange of OPFRs showed that twelve OPFRs in sediments can re-enter into the water body. The risk quotients showed the ecological risk was low to medium, but trixylyl phosphate exposures posed high ecological risk to aquatic organisms.


Subject(s)
Environmental Monitoring , Flame Retardants , Geologic Sediments , Organophosphorus Compounds , Rivers , Water Pollutants, Chemical , Flame Retardants/analysis , China , Rivers/chemistry , Risk Assessment , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Organophosphorus Compounds/analysis
18.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2364-2375, 2024 May.
Article in Zh | MEDLINE | ID: mdl-38812137

ABSTRACT

To explore the active substances exerting anti-tumour effect in lemon essential oil and the molecular mechanism inhibiting the proliferation of head and neck cancer cells SCC15 and CAL33, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay(MTT) was utilized to identify the active component inhibiting the proliferation of head and neck cancer cells, namely citral. The IC_(50) of citral inhibiting the proliferation of head and neck cancer cells and normal cells were also determined. In addition, a 5-ethynyl-2'-deoxyuridine(EdU) staining assay was used to detect the effect of citral on the proliferation rate of head and neck cancer cells, and a colony formation assay was used to detect the effect of citral on tumor sphere formation of head and neck cancer cells in vitro. The cell cycle arrest and apoptosis induction of head and neck cancer cells by citral were evaluated by flow cytometry, and Western blot was used to detect the effect of citral on the expression levels of cell cycle-and apoptosis-related proteins in head and neck cancer cells. The findings indicated that citral could effectively inhibit the proliferation and growth of head and neck cancer cells, with anti-tumor activity, and its half inhibitory concentrations for CAL33 and SCC15 were 54.78 and 25.23 µg·mL~(-1), respectively. Furthermore, citral arrested cell cycle at G_2/M phase by down-regulating cell cycle-related proteins such as S-phase kinase associated protein 2(SKP2), C-MYC, cyclin dependent kinase 1(CDK1), and cyclin B. Moreover, citral increased the cysteinyl aspartate-specific proteinase-3(caspase-3), cysteinyl aspartate-specific proteinase-9(caspase-9), and cleaved poly ADP-ribose polymerase(PARP). It up-regulated the level of autophagy-related proteins including microtubule associated protein 1 light chain 3B(LC3B), sequestosome 1(P62/SQSTM1), autophagy effector protein Beclin1(Beclin1), and lysosome-associate membrane protein 1(LAMP1), suggesting that citral could effectively trigger cell apoptosis and cell autophagy in head and neck cancer cells. Furthermore, the dual-tagged plasmid system mCherry-GFP-LC3 was used, and it was found that citral impeded the fusion of autophagosomes and lysosomes, leading to autophagic flux blockage. Collectively, our findings reveal that the main active anti-proliferation component of lemon essential oil is citral, and this component has a significant inhibitory effect on head and neck cancer cells. Its underlying molecular mechanism is that citral induces apoptosis and autophagy by cell cycle arrest and ultimately inhibits cell proliferation.


Subject(s)
Acyclic Monoterpenes , Apoptosis , Cell Proliferation , Head and Neck Neoplasms , Monoterpenes , Oils, Volatile , Humans , Cell Proliferation/drug effects , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/genetics , Apoptosis/drug effects , Cell Line, Tumor , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Monoterpenes/pharmacology , Monoterpenes/chemistry , Cell Cycle Checkpoints/drug effects , Citrus/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
19.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 765-773, 2024 Jul 15.
Article in Zh | MEDLINE | ID: mdl-39014955

ABSTRACT

OBJECTIVES: To investigate the role and mechanism of epithelial-mesenchymal transition (EMT) in a rat model of bronchopulmonary dysplasia (BPD). METHODS: The experiment consisted of two parts. (1) Forty-eight preterm rats were randomly divided into a normoxia group and a hyperoxia group, with 24 rats in each group. The hyperoxia group was exposed to 85% oxygen to establish a BPD model, while the normoxia group was kept in room air at normal pressure. Lung tissue samples were collected on days 1, 4, 7, and 14 of the experiment. (2) Rat type II alveolar epithelial cells (RLE-6TN) were randomly divided into a normoxia group (cultured in air) and a hyperoxia group (cultured in 95% oxygen), and cell samples were collected 12, 24, and 48 hours after hyperoxia exposure. Hematoxylin-eosin staining was used to observe alveolarization in preterm rat lungs, and immunofluorescence was used to detect the co-localization of surfactant protein C (SPC) and α-smooth muscle actin (α-SMA) in preterm rat lung tissue and RLE-6TN cells. Quantitative real-time polymerase chain reaction and protein immunoblotting were used to detect the expression levels of EMT-related mRNA and proteins in preterm rat lung tissue and RLE-6TN cells. RESULTS: (1) Compared with the normoxia group, the hyperoxia group showed blocked alveolarization and simplified alveolar structure after 7 days of hyperoxia exposure. Co-localization of SPC and α-SMA was observed in lung tissue, with decreased SPC expression and increased α-SMA expression in the hyperoxia group at 7 and 14 days of hyperoxia exposure compared to the normoxia group. In the hyperoxia group, the mRNA and protein levels of TGF-ß1, α-SMA, and N-cadherin were increased, while the mRNA and protein levels of SPC and E-cadherin were decreased at 7 and 14 days of hyperoxia exposure compared to the normoxia group (P<0.05). (2) SPC and α-SMA was observed in RLE-6TN cells, with decreased SPC expression and increased α-SMA expression in the hyperoxia group at 24 and 48 hours of hyperoxia exposure compared to the normoxia group. Compared to the normoxia group, the mRNA and protein levels of SPC and E-cadherin in the hyperoxia group were decreased, while the mRNA and protein levels of TGF-ß1, α-SMA, and E-cadherin in the hyperoxia group increased at 48 hours of hyperoxia exposure (P<0.05). CONCLUSIONS: EMT disrupts the tight connections between alveolar epithelial cells in a preterm rat model of BPD, leading to simplified alveolar structure and abnormal development, and is involved in the development of BPD. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 765-773.


Subject(s)
Bronchopulmonary Dysplasia , Disease Models, Animal , Epithelial-Mesenchymal Transition , Hyperoxia , Rats, Sprague-Dawley , Animals , Bronchopulmonary Dysplasia/etiology , Bronchopulmonary Dysplasia/pathology , Bronchopulmonary Dysplasia/metabolism , Hyperoxia/complications , Rats , Actins/analysis , Actins/metabolism , Actins/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/analysis , Animals, Newborn , Female , Pulmonary Surfactant-Associated Protein C/genetics , Lung/pathology , Lung/metabolism , Male
20.
Mol Genet Genomics ; 298(6): 1309-1319, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37498361

ABSTRACT

BACKGROUND: Obesity is highly influenced by heritability and variant effects. While previous genome-wide association studies (GWASs) have successfully identified numerous genetic loci associated with obesity-related traits [body mass index (BMI) and waist-to-hip ratio (WHR)], most causal variants remain unidentified. The high degree of linkage disequilibrium (LD) throughout the genome makes it extremely difficult to distinguish the GWAS-associated SNPs that exert a true biological effect. OBJECTIVE: This study was to identify the potential causal variants having a biological effect on obesity-related traits. METHODS: We used Probabilistic Annotation INTegratOR, a Bayesian fine-mapping method, which incorporated genetic association data (GWAS summary statistics), LD structure, and functional annotations to calculate a posterior probability of causality for SNPs across all loci of interest. Moreover, we performed gene expression analysis using the available public transcriptomic data to validate the corresponding genes of the potential causal SNPs partially. RESULTS: We identified 96 SNPs for BMI and 43 SNPs for WHR with a high posterior probability of causality (> 99%), including 49 BMI SNPs and 24 WHR SNPs which did not reach genome-wide significance in the original GWAS. Finally, we partially validated some genes corresponding to the potential causal SNPs. CONCLUSION: Using a statistical fine-mapping approach, we identified a set of potential causal variants to be prioritized for future functional validation and also detected some novel trait-associated variants. These results provided novel insight into our understanding of the genetics of obesity and also demonstrated that fine mapping may improve upon the results identified by the original GWASs.


Subject(s)
Genome-Wide Association Study , Obesity , Humans , Chromosome Mapping/methods , Genome-Wide Association Study/methods , Bayes Theorem , Linkage Disequilibrium , Obesity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL