Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 18(12): 1342-1352, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29058703

ABSTRACT

T cells reorganize their metabolic profiles after being activated, but the systemic metabolic effect of sustained activation of the immune system has remained unexplored. Here we report that augmented T cell responses in Pdcd1-/- mice, which lack the inhibitory receptor PD-1, induced a metabolic serum signature characterized by depletion of amino acids. We found that the depletion of amino acids in serum was due to the accumulation of amino acids in activated Pdcd1-/- T cells in the lymph nodes. A systemic decrease in tryptophan and tyrosine led to substantial deficiency in the neurotransmitters serotonin and dopamine in the brain, which resulted in behavioral changes dominated by anxiety-like behavior and exacerbated fear responses. Together these data indicate that excessive activation of T cells causes a systemic metabolomic shift with consequences that extend beyond the immune system.


Subject(s)
Anxiety/physiopathology , Behavior, Animal/physiology , Fear/physiology , Lymphocyte Activation/immunology , Programmed Cell Death 1 Receptor/genetics , T-Lymphocytes/immunology , Amino Acids/blood , Animals , Brain/metabolism , Dopamine/deficiency , Interferon-gamma/blood , Kynurenine/blood , Lymph Nodes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Receptor/deficiency , Serotonin/deficiency , T-Lymphocytes/metabolism , Tryptophan/metabolism , Tyrosine/metabolism
2.
Nature ; 599(7885): 471-476, 2021 11.
Article in English | MEDLINE | ID: mdl-34732892

ABSTRACT

Small, soluble metabolites not only are essential intermediates in intracellular biochemical processes, but can also influence neighbouring cells when released into the extracellular milieu1-3. Here we identify the metabolite and neurotransmitter GABA as a candidate signalling molecule synthesized and secreted by activated B cells and plasma cells. We show that B cell-derived GABA promotes monocyte differentiation into anti-inflammatory macrophages that secrete interleukin-10 and inhibit CD8+ T cell killer function. In mice, B cell deficiency or B cell-specific inactivation of the GABA-generating enzyme GAD67 enhances anti-tumour responses. Our study reveals that, in addition to cytokines and membrane proteins, small metabolites derived from B-lineage cells have immunoregulatory functions, which may be pharmaceutical targets allowing fine-tuning of immune responses.


Subject(s)
B-Lymphocytes/metabolism , Interleukin-10/immunology , Macrophages/metabolism , Neoplasms/immunology , gamma-Aminobutyric Acid/metabolism , Animals , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation , Female , Gene Deletion , Glutamate Decarboxylase/deficiency , Glutamate Decarboxylase/genetics , Humans , Inflammation/immunology , Inflammation/prevention & control , Macrophages/immunology , Male , Mice , Neoplasms/pathology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , gamma-Aminobutyric Acid/biosynthesis
3.
Nucleic Acids Res ; 52(8): 4422-4439, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38567724

ABSTRACT

Efficient repair of DNA double-strand breaks in the Ig heavy chain gene locus is crucial for B-cell antibody class switch recombination (CSR). The regulatory dynamics of the repair pathway direct CSR preferentially through nonhomologous end joining (NHEJ) over alternative end joining (AEJ). Here, we demonstrate that the histone acetyl reader BRD2 suppresses AEJ and aberrant recombination as well as random genomic sequence capture at the CSR junctions. BRD2 deficiency impairs switch (S) region synapse, optimal DNA damage response (DDR), and increases DNA break end resection. Unlike BRD4, a similar bromodomain protein involved in NHEJ and CSR, BRD2 loss does not elevate RPA phosphorylation and R-loop formation in the S region. As BRD2 stabilizes the cohesion loader protein NIPBL in the S regions, the loss of BRD2 or NIPBL shows comparable deregulation of S-S synapsis, DDR, and DNA repair pathway choice during CSR. This finding extends beyond CSR, as NIPBL and BRD4 have been linked to Cornelia de Lange syndrome, a developmental disorder exhibiting defective NHEJ and Ig isotype switching. The interplay between these proteins sheds light on the intricate mechanisms governing DNA repair and immune system functionality.


Subject(s)
Bromodomain Containing Proteins , DNA End-Joining Repair , Immunoglobulin Class Switching , Transcription Factors , Animals , Humans , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Bromodomain Containing Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , DNA Repair , Immunoglobulin Class Switching/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Recombination, Genetic , Transcription Factors/metabolism
4.
Proc Natl Acad Sci U S A ; 120(18): e2216918120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37094168

ABSTRACT

Activation-induced cytidine deaminase (AID) is the essential enzyme for imprinting immunological memory through class switch recombination (CSR) and somatic hypermutation (SHM) of the immunoglobulin (Ig) gene. AID-dependent reduction of Topoisomerase 1 (Top1) promotes DNA cleavage that occurs upon Ig gene diversification, whereas the mechanism behind AID-induced Top1 reduction remains unclear. Here, we clarified the contribution of the microRNA-Ago2 complex in AID-dependent Top1 decrease. Ago2 binds to Top1 3'UTR with two regions of AID-dependent Ago2-binding sites (5'- and 3'dABs). Top1 3'UTR knockout (3'UTRKO) in B lymphoma cells leads to decreases in DNA break efficiency in the IgH gene accompanied by a reduction in CSR and SHM frequencies. Furthermore, AID-dependent Top1 protein reduction and Ago2-binding to Top1 mRNA are down-regulated in 3'UTRKO cells. Top1 mRNA in the highly translated fractions of the sucrose gradient is decreased in an AID-dependent and Top1 3'UTR-mediated manner, resulting in a decrease in Top1 protein synthesis. Both AID and Ago2 localize in the mRNA-binding protein fractions and they interact with each other. Furthermore, we found some candidate miRNAs which possibly bind to 5'- and 3'dAB in Top1 mRNA. Among them, miR-92a-3p knockdown induces the phenotypes of 3'UTRKO cells to wild-type cells whereas it does not impact on 3'UTRKO cells. Taken together, the Ago2-miR-92a-3p complex will be recruited to Top1 3'UTR in an AID-dependent manner and posttranscriptionally reduces Top1 protein synthesis. These consequences cause the increase in a non-B-DNA structure, enhance DNA cleavage by Top1 in the Ig gene and contribute to immunological memory formation.


Subject(s)
MicroRNAs , MicroRNAs/genetics , 3' Untranslated Regions , DNA Cleavage , Cytidine Deaminase/genetics , Immunoglobulin Class Switching , Antibodies/genetics , Somatic Hypermutation, Immunoglobulin
5.
EMBO J ; 40(12): e106393, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33938017

ABSTRACT

Antibody class switch recombination (CSR) is a locus-specific genomic rearrangement mediated by switch (S) region transcription, activation-induced cytidine deaminase (AID)-induced DNA breaks, and their resolution by non-homologous end joining (NHEJ)-mediated DNA repair. Due to the complex nature of the recombination process, numerous cofactors are intimately involved, making it important to identify rate-limiting factors that impact on DNA breaking and/or repair. Using an siRNA-based loss-of-function screen of genes predicted to encode PHD zinc-finger-motif proteins, we identify the splicing factor Phf5a/Sf3b14b as a novel modulator of the DNA repair step of CSR. Loss of Phf5a severely impairs AID-induced recombination, but does not perturb DNA breaks and somatic hypermutation. Phf5a regulates NHEJ-dependent DNA repair by preserving chromatin integrity to elicit optimal DNA damage response and subsequent recruitment of NHEJ factors at the S region. Phf5a stabilizes the p400 histone chaperone complex at the locus, which in turn promotes deposition of H2A variant such as H2AX and H2A.Z that are critical for the early DNA damage response and NHEJ, respectively. Depletion of Phf5a or p400 blocks the repair of both AID- and I-SceI-induced DNA double-strand breaks, supporting an important contribution of this axis to programmed as well as aberrant recombination.


Subject(s)
DNA Helicases/genetics , DNA Repair , DNA-Binding Proteins/genetics , Histones/genetics , RNA-Binding Proteins/genetics , Trans-Activators/genetics , Animals , B-Lymphocytes , Cell Line , Humans , Immunoglobulin Class Switching , Mice, Inbred C57BL , RNA, Small Interfering/genetics , Recombination, Genetic
6.
Nat Immunol ; 14(12): 1212-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24240160

ABSTRACT

PD-1, a negative coreceptor expressed on antigen-stimulated T cells and B cells, seems to serve as a 'rheostat' of the immune response. The molecular mechanisms of the functions of PD-1, in conjunction with the mild, chronic and strain-specific autoimmune phenotypes of PD-1-deficient mice, in contrast to the devastating fatal autoimmune disease of mice deficient in the immunomodulatory receptor CTLA-4, suggest that immunoregulation by PD-1 is rather antigen specific and is mainly cell intrinsic. Such unique properties make PD-1 a powerful target for immunological therapy, with highly effective clinical applications for cancer treatment.


Subject(s)
B-Lymphocytes/immunology , Immune System/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , Animals , B-Lymphocytes/metabolism , Humans , Immune System/metabolism , Immune Tolerance/immunology , Mice , Models, Immunological , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/immunology , T-Lymphocytes/metabolism
7.
J Am Chem Soc ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848460

ABSTRACT

Cancer immune therapies, particularly programmed cell death protein 1 (PD-1) blockade immunotherapy, falter in aged individuals due to compromised T-cell immunity. Spermidine, a biogenic polyamine that declines along with aging, shows promise in restoring antitumor immunity by enhancing mitochondrial fatty acid oxidation (FAO). Herein, we report a spermidine-based chemoproteomic probe (probe 2) that enables profiling of spermidine-binding proteins and screening for small-molecule enhancers of mitochondrial FAO. Chemoproteomic profiling by the probe revealed 140 proteins engaged in cellular interaction with spermidine, with a significant majority being mitochondrial proteins. Hydroxyl coenzyme A (CoA) dehydrogenase subunits α (HADHA) and other lipid metabolism-linked proteins are among the mitochondrial proteins that have attracted considerable interest. Screening spermidine analogs with the probe led to the discovery of compound 13, which interacts with these lipid metabolism-linked proteins and activates HADHA. This simple and biostable synthetic compound we named "spermimic" mirrors spermidine's ability to enhance mitochondrial bioenergetics and displays similar effectiveness in augmenting PD-1 blockade therapy in mice. This study lays the foundation for developing small-molecule activators of antitumor immunity, offering potential in combination cancer immunotherapy.

8.
EMBO J ; 39(15): e102931, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32511795

ABSTRACT

Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1), a dNTP triphosphohydrolase, regulates the levels of cellular dNTPs through their hydrolysis. SAMHD1 protects cells from invading viruses that depend on dNTPs to replicate and is frequently mutated in cancers and Aicardi-Goutières syndrome, a hereditary autoimmune encephalopathy. We discovered that SAMHD1 localizes at the immunoglobulin (Ig) switch region, and serves as a novel DNA repair regulator of Ig class switch recombination (CSR). Depletion of SAMHD1 impaired not only CSR but also IgH/c-Myc translocation. Consistently, we could inhibit these two processes by elevating the cellular nucleotide pool. A high frequency of nucleotide insertion at the break-point junctions is a notable feature in SAMHD1 deficiency during activation-induced cytidine deaminase-mediated genomic instability. Interestingly, CSR induced by staggered but not blunt, double-stranded DNA breaks was impaired by SAMHD1 depletion, which was accompanied by enhanced nucleotide insertions at recombination junctions. We propose that SAMHD1-mediated dNTP balance regulates dNTP-sensitive DNA end-processing enzyme and promotes CSR and aberrant genomic rearrangements by suppressing the insertional DNA repair pathway.


Subject(s)
DNA Repair , Deoxyribonucleotides/metabolism , Immunoglobulin Class Switching , SAM Domain and HD Domain-Containing Protein 1/metabolism , Cell Line , Deoxyribonucleotides/genetics , Humans , SAM Domain and HD Domain-Containing Protein 1/genetics
9.
Nat Immunol ; 13(6): 596-603, 2012 Apr 29.
Article in English | MEDLINE | ID: mdl-22544392

ABSTRACT

TRIM28 is a component of heterochromatin complexes whose function in the immune system is unknown. By studying mice with conditional T cell-specific deletion of TRIM28 (CKO mice), we found that TRIM28 was phosphorylated after stimulation via the T cell antigen receptor (TCR) and was involved in the global regulation of CD4(+) T cells. The CKO mice had a spontaneous autoimmune phenotype that was due in part to early lymphopenia associated with a defect in the production of interleukin 2 (IL-2) as well as incomplete cell-cycle progression of their T cells. In addition, CKO T cells showed derepression of the cytokine TGF-ß3, which resulted in an altered cytokine balance; this caused the accumulation of autoreactive cells of the T(H)17 subset of helper T cells and of Foxp3(+) T cells. Notably, CKO Foxp3(+) T cells were unable to prevent the autoimmune phenotype in vivo. Our results show critical roles for TRIM28 in both T cell activation and T cell tolerance.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Cycle/immunology , Interleukin-2/immunology , Nuclear Proteins/immunology , Receptors, Antigen, T-Cell/immunology , Repressor Proteins/immunology , Transforming Growth Factor beta3/immunology , Animals , Autoimmunity/immunology , CD4-Positive T-Lymphocytes/cytology , DNA/chemistry , DNA/genetics , Forkhead Transcription Factors/immunology , Humans , Inflammation/immunology , Interleukin-2/blood , Jurkat Cells , Mice , Mice, Knockout , Mice, Transgenic , Nuclear Proteins/genetics , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Repressor Proteins/genetics , Specific Pathogen-Free Organisms , Th17 Cells/immunology , Transforming Growth Factor beta3/biosynthesis , Tripartite Motif-Containing Protein 28
10.
Int Immunol ; 35(8): 361-375, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37086201

ABSTRACT

Activation-induced cytidine deaminase (AID)-dependent DNA cleavage is the initial event of antibody gene-diversification processes such as class switch recombination (CSR) and somatic hypermutation (SHM). We previously reported the requirement of an AID-dependent decrease of topoisomerase 1 (Top1) for efficient DNA cleavage, but the underlying molecular mechanism has remained elusive. This study focuses on HuR/ELAVL1, a protein that binds to AU-rich elements in RNA. HuR-knockout (KO) CH12 cells derived from murine B lymphoma cells were found to have lower CSR and hypermutation efficiencies due to decreased AID-dependent DNA cleavage levels. The HuR-KO CH12 cells do not show impairment in cell cycles and Myc expression, which have been reported in HuR-reduced spleen B cells. Furthermore, drugs that scavenge reactive oxygen species (ROS) do not rescue the lower CSR in HuR-KO CH12 cells, meaning that ROS or decreased c-Myc protein amount is not the reason for the deficiencies of CSR and hypermutation in HuR-KO CH12 cells. We show that HuR binds to Top1 mRNA and that complete deletion of HuR abolishes AID-dependent repression of Top1 protein synthesis in CH12 cells. Additionally, reduction of CSR to IgG3 in HuR-KO cells is rescued by knockdown of Top1, indicating that elimination of the AID-dependent Top1 decrease is the cause of the inefficiency of DNA cleavage, CSR and hypermutation in HuR-KO cells. These results show that HuR is required for initiation of antibody diversification and acquired immunity through the regulation of AID-dependent DNA cleavage by repressing Top1 protein synthesis.


Subject(s)
Antibodies , Cytidine Deaminase , DNA Topoisomerases, Type I , ELAV-Like Protein 1 , Immunoglobulin Class Switching , Somatic Hypermutation, Immunoglobulin , Cytidine Deaminase/metabolism , Animals , Mice , ELAV-Like Protein 1/metabolism , DNA Topoisomerases, Type I/metabolism , Cell Line, Tumor , Antibodies/genetics , B-Lymphocytes/immunology , Mice, Inbred C57BL , Gene Knockdown Techniques
SELECTION OF CITATIONS
SEARCH DETAIL