Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Mater ; 13(2): 157-62, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24270581

ABSTRACT

The applications of lanthanide-doped upconversion nanocrystals in biological imaging, photonics, photovoltaics and therapeutics have fuelled a growing demand for rational control over the emission profiles of the nanocrystals. A common strategy for tuning upconversion luminescence is to control the doping concentration of lanthanide ions. However, the phenomenon of concentration quenching of the excited state at high doping levels poses a significant constraint. Thus, the lanthanide ions have to be stringently kept at relatively low concentrations to minimize luminescence quenching. Here we describe a new class of upconversion nanocrystals adopting an orthorhombic crystallographic structure in which the lanthanide ions are distributed in arrays of tetrad clusters. Importantly, this unique arrangement enables the preservation of excitation energy within the sublattice domain and effectively minimizes the migration of excitation energy to defects, even in stoichiometric compounds with a high Yb(3+) content (calculated as 98 mol%). This allows us to generate an unusual four-photon-promoted violet upconversion emission from Er(3+) with an intensity that is more than eight times higher than previously reported. Our results highlight that the approach to enhancing upconversion through energy clustering at the sublattice level may provide new opportunities for light-triggered biological reactions and photodynamic therapy.

2.
Langmuir ; 30(12): 3448-54, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24617527

ABSTRACT

Stimuli-responsive liquid marbles for controlled release typically rely on organic moieties that require lengthy syntheses. We report herein a facile, one-step synthesis of hydrophobic and oleophobic TiO2 nanoparticles that display photoresponsive wettability. Water liquid marbles stabilized by these photoresponsive TiO2 particles were found to be stable when shielded from ultraviolet (UV) radiation; however, they quickly collapsed after being irradiated with 302 nm UV light. Oil- and organic-solvent-based liquid marbles could also be fabricated using oleophobic TiO2 nanoparticles and show similar UV-induced collapse. Finally, we demonstrated the formation of the micronized form of water liquid marbles, also known as dry water, by homogenization of the TiO2 nanoparticles with water. The TiO2 dry water displayed a similar photoresponse, whereby the micronized liquid marbles collapsed after irradiation and the dry water turned from a free-flowing powder to a paste. Hence, by exploiting the photoresponsive wettability of TiO2, we fabricated liquid marbles and dry water that display photoresponse and studied the conditions required for their collapse.


Subject(s)
Titanium/chemistry , Ultraviolet Rays , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Nanoparticles/chemistry , Oils/chemistry , Particle Size , Photochemical Processes , Solvents/chemistry , Surface Properties , Wettability
3.
J Biol Inorg Chem ; 17(7): 1093-105, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22825726

ABSTRACT

Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.


Subject(s)
Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Phenanthrolines/chemistry , Pyridines/chemistry , Threonine/chemistry , Zinc/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/chemistry , Cisplatin/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Crystallography, X-Ray , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Phenanthrolines/pharmacology , Spectroscopy, Fourier Transform Infrared , Topoisomerase Inhibitors/chemistry , Topoisomerase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL