Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055081

ABSTRACT

The early detection of diabetic nephropathy (DN) in mice is necessary for the development of drugs and functional foods. The purpose of this study was to identify genes that are significantly upregulated in the early stage of DN progression and develop a novel model to non-invasively monitor disease progression within living animals using in vivo imaging technology. Streptozotocin (STZ) treatment has been widely used as a DN model; however, it also exhibits direct cytotoxicity to the kidneys. As it is important to distinguish between DN-related and STZ-induced nephropathy, in this study, we compared renal responses induced by the diabetic milieu with two types of STZ models: multiple low-dose STZ injections with a high-fat diet and two moderate-dose STZ injections to induce DN. We found 221 genes whose expression was significantly altered during DN development in both models and identified serum amyloid A3 (Saa3) as a candidate gene. Next, we applied the Saa3 promoter-driven luciferase reporter (Saa3-promoter luc mice) to these two STZ models and performed in vivo bioluminescent imaging to monitor the progression of renal pathology. In this study, to further exclude the possibility that the in vivo bioluminescence signal is related to renal cytotoxicity by STZ treatment, we injected insulin into Saa3-promoter luc mice and showed that insulin treatment could downregulate renal inflammatory responses with a decreased signal intensity of in vivo bioluminescence imaging. These results strongly suggest that Saa3 promoter activity is a potent non-invasive indicator that can be used to monitor DN progression and explore therapeutic agents and functional foods.


Subject(s)
Diabetic Nephropathies/metabolism , Gene Expression , Genes, Reporter , Luciferases/genetics , Molecular Imaging , Promoter Regions, Genetic , Serum Amyloid A Protein/genetics , Animals , Biomarkers , Diabetes Mellitus, Experimental , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/etiology , Fluorescent Antibody Technique , Gene Expression Regulation , Inflammation Mediators/metabolism , Luminescent Measurements/methods , Mice , Molecular Imaging/methods , Transcriptome
2.
Acta Diabetol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856757

ABSTRACT

AIMS: Streptozotocin (STZ) is widely used to study diabetic complications. Owing to the nonspecific cytotoxicity of high-dose STZ, alternative models using moderate-dose or a combination of low-dose STZ and a high-fat diet have been established. This study aimed to investigate the effects of these models on muscle function. METHODS: The muscle function of two STZ models using moderate-dose STZ (100 mg/kg, twice) and a combination of low-dose STZ and high-fat diet (50 mg/kg for 5 consecutive days + 45% high-fat diet) were examined using in vivo electrical stimulation. Biochemical and gene expression analysis were conducted on the skeletal muscles of the models immediately after the stimulation. RESULTS: The contractile force did not differ significantly between the models compared to respective controls. However, the moderate-dose STZ model showed more severe fatigue and blunted exercise-induced glycogen degradation possibly thorough a downregulation of oxidative phosphorylation- and vasculature development-related genes expression. CONCLUSIONS: Moderate-dose STZ model is suitable for fatigability assessment in diabetes and careful understanding on the molecular signatures of each model is necessary to guide the selection of suitable models to study diabetic myopathy.

SELECTION OF CITATIONS
SEARCH DETAIL