Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Prep Biochem Biotechnol ; 53(1): 31-39, 2023.
Article in English | MEDLINE | ID: mdl-35225162

ABSTRACT

Various industries ranging from water purification to pharmaceutical production have experienced multi separation steps that impose more process time and contamination possibility by batch operation. We propose a developed microfluidic particle sorter (miniaturized hydrocyclone) that adopts centrifugal force as it has ability to decline the number of separation steps and the risk of extrinsic contamination in continuous process. While biological industries have not relied on mini hydrocyclones considerably because of low efficiency and microfabrication difficulties, current work has been planned to conquer these obstacles. In this research, biomass separation from fermentation broth by 3 mm hydrocyclones was investigated. The effect of apex size, feed flow rate, hydrocyclone geometry were analyzed numerically in four mini-hydrocyclones. The most efficient mini-hydrocyclone was chosen to be made by elegant additive manufacturing technology and studied experimentally. The separation efficiency was achieved up to 90% while the concentration ratio of heavy stream (apex) to dilute stream (vortex finder) was reached more than twofold. The mini hydrocyclone performance in view of energy target was studied by Euler-Reynolds-Efficiency plots. The 4 µm cut size was achieved that is promising high throughput separation for biological particles.


Subject(s)
Biological Products , Saccharomyces cerevisiae , Fermentation , Culture Media , Printing, Three-Dimensional
2.
Prep Biochem Biotechnol ; 53(6): 672-682, 2023.
Article in English | MEDLINE | ID: mdl-36244016

ABSTRACT

Lipopolysaccharide (LPS), as a stubborn contamination, should be monitored and kept in an acceptable level during the pharmaceutical production process. Recombinant hepatitis B surface antigen (r-HBsAg) is one of the recombinant biological products, which is probable to suffer from extrinsic endotoxin due to its long and complex production process. This research aims to assess the potential interaction between LPS and r-HBsAg by recruiting immunoaffinity chromatography (IAC) as a novel tool to quantify the interaction. Molecular modeling was performed on the HBsAg molecule to theoretically predict its potential binding and interaction sites. Then dynamic light scattering (DLS) analysis was implemented on HBsAg, LPS, and mixtures of them to reveal the interaction. The virus-like particle (VLP) structure of HBsAg and the ribbon-like structure of LPS were visualized by transmission electron microscopy (TEM). Finally, the interaction was quantified by applying various LPS/HBsAg ratios ranging from 1.67 to 120 EU/dose in the IAC. Consequently, the LPS/HBsAg ratios in the eluate were measured from 1.67 to a maximum of 92.5 EU/dose. The results indicated that 77 to 100% of total LPS interacted with HBsAg by an inverse relationship to the incubated LPS concentration. The findings implied that the introduced procedure is remarkably practical in the quantification of LPS interaction with a target recombinant protein.


Subject(s)
Chromatography, Affinity , Hepatitis B Surface Antigens , Lipopolysaccharides , Recombinant Proteins , Lipopolysaccharides/analysis , Recombinant Proteins/isolation & purification , Recombinant Proteins/ultrastructure , Hepatitis B Surface Antigens/chemistry , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/isolation & purification , Hepatitis B Surface Antigens/ultrastructure , Microscopy, Electron, Transmission , Hepatitis B Vaccines/chemistry , Hepatitis B Vaccines/genetics , Hepatitis B Vaccines/isolation & purification , Models, Chemical , Amino Acid Sequence , Dynamic Light Scattering , Chromatography, Affinity/methods
3.
Curr Microbiol ; 77(8): 1756-1766, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32328749

ABSTRACT

Considering the economic importance of the probiotics, industrial production of their biomass became important. Cane molasses, as an industrial byproduct, was used in this study to design a medium for biomass overproduction of a functionally probiotic strain, designated as Lactobacillus plantarum strain RPR42. The results showed that strain RPR42 can be best grown anaerobically in 22.5% cane molasses solution. Also, the findings of the single variable at a time experiments and either factorial design indicated that the optimal growth of strain RPR42 can be observed when beef extract, casein hydrolysate, and yeast extract were added into the medium. The central composite design experiments suggested a medium which was designated as cane molasses medium (CMM). Eventually, this medium contained 21.9% cane molasses, 30.72 g/L of a combined mixture of nitrogenous compounds: 0.0754% of a 1:1:1 mixture of polysorbates 20, 60, and 80, and 18.53 gr/L of the combined minerals. Such an optimized cane molasses-based medium supported a significant biomass production since a considerably high cell density, 13.8 g/L/24 h of dry biomass, of the strain was produced. Hence, cane molasses can be regarded as a promising substrate for industrial production purposes.


Subject(s)
Culture Media/chemistry , Industrial Microbiology/methods , Lactobacillus plantarum/growth & development , Molasses , Probiotics , Biomass , Fermentation
4.
Biotechnol Appl Biochem ; 66(4): 681-689, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31169323

ABSTRACT

In the current work, the attempt was made to apply best-fitted artificial neural network (ANN) architecture and the respective training process for predicting final titer of hepatitis B surface antigen (HBsAg), produced intracellularly by recombinant Pichia pastoris Mut+ in the commercial scale. For this purpose, in large-scale fed-batch fermentation, using methanol for HBsAg induction and cell growth, three parameters of average specific growth rate, biomass yield, and dry biomass concentration-in the definite integral form with respect to fermentation time-were selected as input vectors; the final concentration of HBsAg was selected for the ANN output. Used dataset consists of 38 runs from previous batches; feed-forward ANN 3:5:1 with training algorithm of backpropagation based on a Bayesian regularization was trained and tested with a high degree of accuracy. Implementing the verified ANN for predicting the HBsAg titer of the five new fermentation runs, excluded from the dataset, in the full-scale production, the coefficient of regression and root-mean-square error were found to be 0.969299 and 2.716774, respectively. These results suggest that this verified soft sensor could be an excellent alternative for the current relatively expensive and time-intensive analytical techniques such as enzyme-linked immunosorbent assay in the biopharmaceutical industry.


Subject(s)
Bioreactors , Fermentation , Hepatitis B Surface Antigens/metabolism , Neural Networks, Computer , Pichia/metabolism , Bioreactors/economics , Hepatitis B Surface Antigens/chemistry , Hepatitis B Surface Antigens/economics , Pichia/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/economics , Recombinant Proteins/metabolism
5.
Biotechnol Appl Biochem ; 66(1): 91-100, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30318626

ABSTRACT

In our previous study, we demonstrated that continuous power laser could be a clean, rapid, and convenient alternative to the other conventional disruption techniques for the release of recombinant hepatitis B surface antigen (rHBsAg) from Pichia pastoris. In the current work, we examined the effect of pulsed laser in the continuous laboratory-scale process on cell disruption. Design-of-experiments (DOE) methodology was used for optimization of cell disruption process to obtain the highest protein concentration in the disruption buffer. Our investigations for the pulsed laser at wavelength of 1,064 nm demonstrated that for disrupting P. pastoris cell and releasing rHBsAg, the laser power was the most influential factor, and laser pulse duration and cycle number were in the second and third places. According to the results, the effect of laser power and pulse duration (time) had a direct relationship with protein concentration. For the number of cycles, however, increasing the value from the lowest point at first led to the enhancement and then reduction of protein concentration. The maximum cell disruption and rHBsAg release were recorded for the laser system in the energy input of 284 mW and the pulse duration of 100 mSec after four complete rounds of circulation.


Subject(s)
Hepatitis B Surface Antigens/biosynthesis , Hepatitis B virus/genetics , Pichia/metabolism , Hepatitis B Surface Antigens/genetics , Pichia/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
6.
Prep Biochem Biotechnol ; 49(4): 352-359, 2019.
Article in English | MEDLINE | ID: mdl-30707051

ABSTRACT

Artificial neural networking (ANN) seems to be a promising soft sensor for implementing current approaches of quality by design (QbD) and process analytical technologies (PAT) in the biopharmaceutical industry. In this study, we aimed to implement best-fitted ANN architecture for online prediction of the biomass amount of recombinant Pichia pastoris (P. pastoris) - expressing intracellular hepatitis B surface antigen (HBsAg) - during the fed-batch fermentation process using methanol as a sole carbon source. For this purpose, at the induction phase of methanol fed-batch fermentation, carbon evolution rate (CER), dissolved oxygen (DO), and methanol feed rate were selected as input vectors and total wet cell weight (WCW) was considered as output vector for the ANN. The obtained results indicated that after training recurrent ANN with data sets of four fed-batch runs, this toolbox could predict the WCW of the next fed-batch fermentation process at each specified time point with high accuracy. The R-squared and root-mean-square error between actual and predicted values were found to be 0.9985 and 13.73, respectively. This verified toolbox could have major importance in the biopharmaceutical industry since recombinant P. pastoris is widely used for the large-scale production of HBsAg.


Subject(s)
Bacterial Load , Biomass , Neural Networks, Computer , Pichia , Bioreactors , Fermentation , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/chemistry , Methanol/metabolism , Pichia/genetics , Pichia/metabolism , Recombinant Proteins/genetics
7.
Prep Biochem Biotechnol ; 49(2): 158-166, 2019.
Article in English | MEDLINE | ID: mdl-30636487

ABSTRACT

In purification process of recombinant hepatitis B surface antigen (rHBsAg), immunoaffinity chromatography (IAF) is one of the most important and effective steps in rHBsAg purification. However, the buffer composition and the interaction of ligands-rHBsAg often lead to disassembly, deformation, and clumping of a portion of these virus-like particles (VLPs). Besides, the expensive media, variable biospecific ligand density and the possibility of product contamination are other reported drawbacks of using IAF which makes the production process of rHBsAg more challenging. This study investigated the possibility of substituting IAF with purification methods of size-exclusion chromatography (SEC) and ultracentrifugation. In the SEC, the efficacy of rHBsAg purification was examined by four different media in which Toyopearl HW 65S resin demonstrated the best results. By integrating Toyopearl HW 65S resin - with a bed height of 51 cm - and ultracentrifugation process at 47,000 rpm for 48 hr, 95% of protein impurities were removed. Compared to the IAF in rHBsAg production, the purified sample contained a higher percentage of multimeric rHBsAg particles without any noticeable monomer and aggregate forms. The result of this study indicates that the proposed integrated system could be an efficient mild purification alternative for conventional IAF.


Subject(s)
Chromatography, Gel/methods , Hepatitis B Surface Antigens/isolation & purification , Ultracentrifugation/methods , Chromatography, Affinity , Hepatitis B/virology , Hepatitis B virus/chemistry , Humans , Pichia/chemistry , Recombinant Proteins/isolation & purification
8.
Prep Biochem Biotechnol ; 49(8): 813-821, 2019.
Article in English | MEDLINE | ID: mdl-31169457

ABSTRACT

Separation of biomass from culture media by centrifugation and then washing the biomass are mandatory steps in the fermentation process of recombinant Pichia pastoris expressed HBsAg intracellularly. Biomass has to be washed many times to eliminate the culture media residues thoroughly. In this study, we tried to develop the hydrocyclone as an alternative method for separation of biomass from fermentation culture, an attractive replacement for centrifugation processes. The advantages of using hydrocyclone in biomass separation could be summarized in its suitability for continuous separation and its low risk of contamination. To evaluate the performance of hydrocyclone, concentration ratio in underflow to feed stream, capacity, and centrifugal force by considering three parameters of pressure drop, concentration, and the type of hydrocyclone were investigated. Using three level factorial design a concentration ratio equation was developed, with the correlation coefficient R2 = 0.977 ensured the good fitness of the predicted data with the experimental results. In optimal conditions, maximum concentration ratio was 1.246, for flow rate 13.5 LPM and C-force equal to 1276.11 at maximum pressure drop (3 bar) and minimum concentration (0.5% w/w) in hydrocyclone 1. Herein, two different hydrocyclones with the cylindrical diameters of 19 mm and 21 mm were used for separating the yeast cells.


Subject(s)
Centrifugation/instrumentation , Culture Media/chemistry , Hepatitis B Surface Antigens/isolation & purification , Pichia/chemistry , Batch Cell Culture Techniques/instrumentation , Biomass , Equipment Design , Fermentation , Pressure , Recombinant Proteins/isolation & purification
9.
Prep Biochem Biotechnol ; 49(7): 686-694, 2019.
Article in English | MEDLINE | ID: mdl-31035907

ABSTRACT

In mammalian cell culture technology, viral contamination is one of the main challenges; and, so far, various strategies have been taken to remove or inactivate viruses in the cell-line production process. The suitability and feasibility of each method are determined by different factors including effectiveness in target virus inactivation, maintaining recombinant protein stability, easiness-in terms of the process condition, cost-effectiveness, and eco-friendliness. In this research, Taguchi design-of-experiments (DOE) methodology was used to optimize a non-detergent viral inactivation method via considering four factors of temperature, time, pH, and alcohol concentration in an unbiased (orthogonal) fashion with low influence of nuisance factors. Herpes Simplex Virus-1 (HSV1) and Vero cell-line were used as models for enveloped viruses and cell-line, respectively. Examining the cytopathic effects (CPE) in different dilutions showed that pH (4), alcohol (15%), time (120 min), and temperature (25 °C) were the optimal points for viral inactivation. Evaluating the significance of each parameter in the HSV-1 inactivation using Taguchi and ANOVA analyses, the contributions of pH, alcohol, temperature and time were 56.5%, 19.2%, 12%, and 12%, respectively. Examining the impact of the optimal viral treatment condition on the stability of model recombinant protein-recombinant human erythropoietin, no destabilization was detected.


Subject(s)
Cell Culture Techniques/methods , Herpesvirus 1, Human/physiology , Virus Inactivation , Alcohols/metabolism , Animals , Cell Culture Techniques/instrumentation , Chlorocebus aethiops , Equipment Design , Herpesvirus 1, Human/drug effects , Humans , Hydrogen-Ion Concentration , Research Design , Temperature , Vero Cells , Viral Plaque Assay , Virus Inactivation/drug effects
10.
Prep Biochem Biotechnol ; 49(6): 535-544, 2019.
Article in English | MEDLINE | ID: mdl-30990119

ABSTRACT

In recombinant protein production, over-expressed genes induce unfolded protein response (UPR), overloaded protein aggregation in endoplasmic reticulum and its expansion. In this study, we have used 16 chemicals to improve erythropoietin production in engineered CHO cells and tried to study the mechanism of reducing protein aggregation in each treatment. Endoplasmic reticulum expansion was studied through endoplasmic reticulum specific labeling with utilizing fluorescent glibenclamide and its molecular chaperones expression were studied by real-time polymerase chain reaction. The increase in the mRNA level of EPO and endoplasmic reticulum chaperones GRP78/BiP, XBP1, ATF6, and ATF4 in different chemical treatments were not related to ER expansion. On the other hand, ER expansion in beta alanine, beta cyclodextrin and taurine treatments resulted in increased EPO secretion. Dramatically increase in EPO expression in conjugated linoleic acid, spermidine, trehalose, and maltose (19, 20, 16, and 19-fold, respectively) did not increase erythropoietin productivity, but betaine which did not caused ER expansion, with minor increase in EPO gene expression increase EPO productivity. The results indicated that betaine increase EPO secretion in engineered CHO cell line without relation to ER expansion and molecular chaperones expression.


Subject(s)
Erythropoietin/biosynthesis , Gene Expression/drug effects , Organic Chemicals/pharmacology , Recombinant Proteins/biosynthesis , Animals , Apoptosis/drug effects , CHO Cells , Carbohydrates/pharmacology , Cell Proliferation/drug effects , Copper Sulfate/pharmacology , Cricetulus , Cysteine/pharmacology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , Humans , Linoleic Acids/pharmacology , Molecular Chaperones/metabolism , beta-Alanine/pharmacology
11.
Anal Biochem ; 548: 96-101, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29501578

ABSTRACT

This paper describes the construction of a silver-based LSPR biosensor for endotoxin detection. We used GLAD method to procure reproducible silver nanocolumns. In this work, the silver nanostructures were considerably stabilized by a SAM of MPA, and the limit of detection of biosensor was measured to be 340 pg/ml for endotoxin E. coli. Considering endotoxin B. abortus as the second type of endotoxin contamination in our target samples (HBs-ag produced in Institute Pasteur, Iran), we investigated selectivity of the biosensor in various experiments. We showed that this biosensor can selectively detect both types of endotoxins compared to other biological species. Overall, this study proposes that LSPR biosensing can be considered as a sensitive, simple, and label-free method for endotoxin detection in the quality control laboratories.


Subject(s)
Biosensing Techniques/methods , Endotoxins/analysis , Escherichia coli/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry
12.
Protein Expr Purif ; 141: 25-31, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28870699

ABSTRACT

In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (<50%). In the current study, we hypothesized that ionic strengths of IEC buffers are easy-to-control parameters which can play a major role in optimizing the process and increasing the recovery. Thus, we investigated the effects of ionic strengths of buffers on rHBsAg recovery via adjusting Tris-HCl and NaCl concentrations. Increasing the conductivity of equilibration (Eq.), washing (Wash.) and elution (Elut.) buffers from their initial values of 1.6 mS/cm, 1.6 mS/cm, and 7.0 mS/cm to 1.6 mS/cm, 7 mS/cm and 50 mS/cm, respectively yielded an average recovery rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg.


Subject(s)
Chromatography, Ion Exchange/methods , Hepatitis B Surface Antigens/chemistry , Hepatitis B Surface Antigens/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Batch Cell Culture Techniques , Buffers , Chromatography, Ion Exchange/standards , Electric Conductivity , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/metabolism , Pichia/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
13.
Protein Expr Purif ; 145: 1-6, 2018 05.
Article in English | MEDLINE | ID: mdl-29246516

ABSTRACT

In the production process of recombinant Hepatitis B surface antigen (rHBsAg) various separation techniques are used to purify this virus-like particle (VLP). In this study, we developed antibody-conjugated super-paramagnetic Fe3O4/SiO2 core-shell nanoparticles as a highly selective method for isolation of expressed rHBsAg in yeast Pichia pastoris. For this purpose, first, iron oxide magnetic nanoparticles (MNPs) were prepared by co-precipitation method in alkali media and coated with silica. Then the surface was activated by amine groups and conjugated with oxidized antibodies. X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) were used to study the physical properties of MNPs. To evaluate the efficacy of these MNPs as a purification technique successfully synthesized MNPs were added to the rHBsAg sample to couple with the antigen and then be isolated based on their magnetic property. In the present research, in the optimum condition, we could isolate 65% of total rHBsAg from the final vaccine sample with purity above 95%. In this procedure, the maximum obtained specific yield (mg HBsAg/mg MNPs) was equal to 37.6. These results underline the potential application of the immune-magnetic separation (IMS) in the future bioseparation systems.


Subject(s)
Hepatitis B Antibodies/genetics , Hepatitis B Surface Antigens/isolation & purification , Hepatitis B virus/metabolism , Immunomagnetic Separation/methods , Magnetite Nanoparticles/chemistry , Hepatitis B Surface Antigens/chemistry , Hepatitis B Surface Antigens/immunology , Pichia/genetics , Recombinant Proteins/isolation & purification
14.
Biotechnol Appl Biochem ; 65(2): 181-187, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28762562

ABSTRACT

Alpha-1-antitrypsin (A1AT) is a major serum protein in human with protease inhibitory activity. Because of its extensive application in medicine, recombinant DNA technology has been considered for its production. The current study examines coexpression of A1AT and soluble domain of v-SNARE in Pichia pastoris, which can prevent the secretion of A1AT after thoroughly passing the secretory pathway. This was done mainly to preserve the biological activity of A1AT, which in the secretory mode might be impaired in the fermentation and early clarification conditions. SNARE proteins are the driving force for vesicle docking and membrane fusion in the exocytosis. Intracellular expression of the cytoplasmic domain of v-SNARE and its subsequent interaction to form SNARE complex can intensify the competition for A1AT secretory vesicles to be fused and released to the media. Our investigation shows successful coexpression of A1AT in the form of post-Golgi vesicles and the cytoplasmic domain of v-SNARE. Our findings confirmed the reduction of A1AT secretion by 45% caused accumulation of post-Golgi secretory vesicles filled with A1AT inside the yeast cell. A1AT trapped in secretory vesicles were biologically more active than secretory A1AT. These results indicate that the inhibition of A1AT secretion can protect its biological activity in fermentation and clarification processes.


Subject(s)
Pichia/genetics , SNARE Proteins/genetics , alpha 1-Antitrypsin/genetics , Fermentation , Gene Expression , Genetic Vectors/genetics , Humans , Industrial Microbiology , Pichia/chemistry , Pichia/metabolism , Protein Domains , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , SNARE Proteins/chemistry , SNARE Proteins/metabolism , Transformation, Genetic , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/metabolism
15.
Prep Biochem Biotechnol ; 48(8): 683-692, 2018.
Article in English | MEDLINE | ID: mdl-30265182

ABSTRACT

The costly media, inconsistent ligand density, ligand leakage, and possible destabilization of recombinant hepatitis B surface antigen (rHBsAg) particles are main drawbacks of using immunoaffinity chromatography (IAF) in the large-scale downstream processing. In this study, we aimed to use an efficient large-scale purification system as an alternative purification method for immunoaffinity chromatography. For this purpose, we suggested integrating non-affinity chromatographic methods of hydrophobic interaction chromatography (HIC) and size-exclusion chromatography (SEC) for cost-effective purification of rHBsAg expressed in P. pastoris. The optimization of such process is not trivial and straightforward since diverse molecular characteristics of expressed rHBsAg in each type of host cell cause different interactions in non-affinity chromatography processes. The working buffer composition and chromatography parameters are the most influential factors in hydrophobic interaction chromatography. The best result for lab-scale HIC was achieved by using ammonium sulfate buffer in 10% of saturation concentration in pH 7.0 with Butyl-S Sepharose 6 Fast Flow medium and with subsequent Tween-100 and urea elution. In this process, the recovery, purity, and total yield were about 84%, 82%, and 69%, respectively. By scaling-up the HIC and integrating it with Sephacryl S-400 SEC, we obtained highly pure, i.e., > 90%, rHBsAg virus-like particles (VLP).


Subject(s)
Chromatography, Affinity , Hepatitis B Surface Antigens , Hepatitis B virus/genetics , Pichia/metabolism , Hepatitis B Surface Antigens/biosynthesis , Hepatitis B Surface Antigens/chemistry , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/isolation & purification , Pichia/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
16.
Prep Biochem Biotechnol ; 48(6): 490-497, 2018.
Article in English | MEDLINE | ID: mdl-29932813

ABSTRACT

In the downstream process of recombinant hepatitis B surface antigen (rHBsAg), nano-colloidal silica adsorbent (Aerosil-380) is one of the possible methods to separate the antigen from other main impurities partially. The current study aimed to maximize the adsorptive capacity of Aerosil-380 as well as rHBsAg recovery for large-scale production of recombinant hepatitis B vaccine. The experimental design methodology was used to optimize the eight critical parameters influencing the efficiency, rHBsAg recovery, of the adsorption-desorption process in the lab-scale. These examined parameters were the adsorption-desorption temperature, pH, contact time, agitation speed, antigen concentration, and desorption buffer. Under optimal condition, the maximum adsorption capacity of Aerosil-380 was equal to 3333 µg.g-1 (rHBsAg/adsorbent), and we could recover about 95% of rHBsAg with purity of 54% (rHBsAg/total protein) in the lab scale. Using the optimum parameters for rHBsAg clarification process in large-scale by Aerosil-380, we recovered about 78% of rHBsAg with 43% purity. Based on the obtained experimental data, Langmuir adsorption isotherm and pseudo-first-order kinetic model provide the best correlations of experimental data for the adsorbent. Findings of this study significantly increase the recovery of clarification process of rHBsAg in large-scale compared to previous reports.


Subject(s)
Hepatitis B Surface Antigens/isolation & purification , Silicon Dioxide/chemistry , Adsorption , Buffers , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Hepatitis B Surface Antigens/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Models, Chemical , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Spectroscopy, Fourier Transform Infrared , Temperature , Thermodynamics
17.
Prep Biochem Biotechnol ; 48(2): 121-127, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29313412

ABSTRACT

Recombinant protein aggregation is a problematic issue and can provoke immunological response. The aim of this study was to analyze the stability of erythropoietin (EPO), as a therapeutic protein expressed in mammalian cells, in the presence of different chemicals and find a specific stabilizer for EPO. The effects of several chemicals, including mannitol, betaine, trehalose, taurine, linoleic acid, beta-cyclodextrin, copper sulfate, spermidine, maltose, maltodextrin, sucrose, dextran, beta-alanine, myo-inositol, and cysteine, on protein stabilization through the thermally induced aggregation of EPO were monitored. Based on the results of turbidity assay for thermal aggregation, three different patterns were observed for protein stability of active pharmaceutical ingredient of EPO, namely, accelerated, dose-dependent, and inhibitory behaviors for aggregate formation due to treatment with spermidine, mannitol, and betaine, respectively. According to circular dichroism outcomes, EPO treatment with betaine and spermidine resulted in different helical contents of the secondary structure. Dynamic light scattering experiments indicated that treating EPO with betaine resulted in less protein aggregation due to freeze and thaw stresses. Betaine was able to stabilize EPO and inhibit its aggregation, as opposed to spermidine that induced protein aggregation.


Subject(s)
Erythropoietin/chemistry , Excipients/chemistry , Protein Aggregates , Animals , CHO Cells , Cricetulus , Freezing , Humans , Protein Binding , Protein Conformation , Protein Stability , Recombinant Proteins/chemistry
18.
PLoS One ; 17(7): e0267206, 2022.
Article in English | MEDLINE | ID: mdl-35877673

ABSTRACT

Efficient Bio-immunomagnetic separation (BIMS) of recombinant hepatitis B surface antigen (rHBsAg) with high binding capacity was studied using affinity ligand immobilized bacterial magnetosome nanoparticles (Magnetospirillum gryphiswaldense strain MSR-1 bacteria) as an immunomagnetic sorbent. Our results showed immunomagnetic adsorption, acted by affinity interactions with the immobilized monoclonal antibody, offered higher antigen adsorption and desorption capacities as compared with the commercially available immunoaffinity sorbents. Four different ligand densities of the Hep-1 monoclonal antibody were examined during covalent immobilization on Pyridyl Disulfide-functionalized magnetosome nanoparticles for HBsAg immunomagnetic separation. The average of adsorption capacity was measured as 3 mg/ml in optimized immunomagnetic sorbent (1.056 mg rHBsAg/ml immunomagneticsorbent/5.5 mg of total purified protein) and 5mg/ml in immunoaffinity sorbent (0.876 mg rHBsAg/ml immunosorbent/5.5 mg total purified protein during 8 runs. Immunomagnetic sorbent demonstrated ligand leakage levels below 3 ng Mab/Ag rHBsAg during 12 consecutive cycles of immunomagnetic separation (IMS). The results suggest that an immunomagnetic sorbent with a lower ligand density (LD = 3 mg Mab/ml matrix) could be the best substitute for the immunosorbent used in affinity purification of r-HBsAg there are significant differences in the ligand density (98.59% (p-value = 0.0182)), adsorption capacity (97.051% (p-value = 0.01834)), desorption capacity (96.06% (p-value = 0.036)) and recovery (98.97% (p-value = 0.0231)). This study indicates that the immunosorbent approach reduces the cost of purification of Hep-1 protein up to 50% as compared with 5 mg Mab/ml immunoaffinity sorbent, which is currently used in large-scale production. As well, these results demonstrate that bacterial magnetosome nanoparticles (BMs) represent a promising alternative product for the economical and efficient immobilization of proteins and the immunomagnetic separation of Biomolecules, promoting innovation in downstream processing.


Subject(s)
Magnetosomes , Nanoparticles , Antibodies, Monoclonal/metabolism , Hepatitis B Surface Antigens , Immunomagnetic Separation/methods , Immunosorbents/metabolism , Ligands , Magnetosomes/metabolism , Recombinant Proteins/metabolism
19.
Immunol Res ; 70(4): 469-480, 2022 08.
Article in English | MEDLINE | ID: mdl-35445310

ABSTRACT

Despite the availability of an effective vaccine and antiviral treatments, hepatitis B is still a global public health problem. Hepatitis B vaccination can prevent the disease. Vaccination induces long-lasting protective immune memory, and the identification of memory cell subsets can indicate the effectiveness of vaccines. Here, we compared the frequency of CD4+ memory T cell subsets between responders and nonresponders to HB vaccination. Besides, the frequency of IFN-γ+ memory T cells was compared between studied groups. Study participants were grouped according to their anti-HBsAb titer. For restimulation of CD4+ memory T cells, peripheral blood mononuclear cells (PBMCs) were cultured in the presence of HBsAg and PHA for 48 h. Besides, PMA, ionomycin, and brefeldin were added during the last 5 h of incubation to induce IFN-γ production. Flow cytometry was used for analysis. There was a statistically significant difference in the frequency of CD4+CD95+, CD4+CD95Hi, and CD4+CD95low/med T stem cell memory (TSCM) cells between responder and nonresponder groups. However, the comparison of the frequency of memory T cells producing IFN-γ showed no differences. Our results identified a possible defect of immunological CD4+ memory T cell formation in nonresponders due to their lower frequency of CD4+ TSCM cells.


Subject(s)
Hepatitis B Vaccines , Hepatitis B , CD4-Positive T-Lymphocytes , Humans , Immunologic Memory , Leukocytes, Mononuclear , Stem Cells
20.
Database (Oxford) ; 20212021 05 18.
Article in English | MEDLINE | ID: mdl-34003248

ABSTRACT

Sus scrofa or pig was domesticated thousands of years ago. Through various indigenous breeds, different phenotypes were produced such as Chinese inbred miniature minipig or Wuzhishan pig (WZSP), which is broadly used in the life and medical sciences. The whole genome of WZSP was sequenced in 2012. Through a bioinformatics study of pig carbonic anhydrase (CA) sequences, we detected some ß- and γ-class CAs among the WZSP CAs annotated in databases, while ß- or γ-CAs had not previously been described in vertebrates. This finding urged us to analyze the quality of whole genome sequence of WZSP for the possible bacterial contamination. In this study, we used bioinformatics methods and web tools such as UniProt, European Bioinformatics Institute, National Center for Biotechnology Information, Ensembl Genome Browser, Ensembl Bacteria, RSCB PDB and Pseudomonas Genome Database. Our analysis defined that pig has 12 classical α-CAs and 3 CA-related proteins. Meanwhile, it was approved that the detected CAs in WZSP are categorized in the ß- and γ-CA families, which belong to Pseudomonas spp. and Acinetobacter spp. The protein structure study revealed that the identified ß-CA sequence from WZSP belongs to Pseudomonas aeruginosa with PDB ID: 5JJ8, and the identified γ-CA sequence from WZSP belongs to P. aeruginosa with PDB ID: 3PMO. Bioinformatics and computational methods accompanied with bacterial-specific markers, such as 16S rRNA and ß- and γ-class CA sequences, can be used to identify bacterial contamination in mammalian DNA samples.


Subject(s)
Carbonic Anhydrases , Swine, Miniature , Animals , Bacteria/genetics , DNA , RNA, Ribosomal, 16S , Sus scrofa , Swine
SELECTION OF CITATIONS
SEARCH DETAIL